Details

Material-Integrated Intelligent Systems


Material-Integrated Intelligent Systems

Technology and Applications
1. Aufl.

von: Stefan Bosse, Dirk Lehmhus, Walter Lang, Matthias Busse

250,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 22.11.2017
ISBN/EAN: 9783527679263
Sprache: englisch
Anzahl Seiten: 696

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Combining different perspectives from materials science, engineering, and computer science, this reference provides a unified view of the various aspects necessary for the successful realization of intelligent systems.<br> The editors and authors are from academia and research institutions with close ties to industry, and are thus able to offer first-hand information here. They adopt a unique, three-tiered approach such that readers can gain basic, intermediate, and advanced topical knowledge. The technology section of the book is divided into chapters covering the basics of sensor integration in materials, the challenges associated with this approach, data processing, evaluation, and validation, as well as methods for achieving an autonomous energy supply. The applications part then goes on to showcase typical scenarios where material-integrated intelligent systems are already in use, such as for structural health monitoring and smart textiles.<br>
<p>Foreword XV</p> <p>Preface XIX</p> <p>Part One Introduction 1</p> <p><b>1 On Concepts and Challenges of Realizing Material-Integrated Intelligent Systems 3<br /></b><i>Stefan Bosse and Dirk Lehmhus</i></p> <p>1.1 Introduction 3</p> <p>1.2 System Development Methodologies and Tools (Part Two) 7</p> <p>1.3 Sensor Technologies and Material Integration (Part Three and Four) 8</p> <p>1.4 Signal and Data Processing (Part Five) 15</p> <p>1.5 Networking and Communication (Part Six) 17</p> <p>1.6 Energy Supply and Management (Part Seven) 21</p> <p>1.7 Applications (Part Eight) 21</p> <p>References 24</p> <p>Part Two System Development 29</p> <p><b>2 Design Methodology for Intelligent Technical Systems 31<br /></b><i>Mareen Vaßholz, Roman Dumitrescu, and Jürgen Gausemeier</i></p> <p>2.1 From Mechatronics to Intelligent Technical Systems 32</p> <p>2.2 Self-Optimizing Systems 36</p> <p>2.3 Design Methodology for Intelligent Technical Systems 38</p> <p>2.3.1 Domain-Spanning Conceptual Design 41</p> <p>2.3.2 Domain-Specific Conceptual Design 50</p> <p>References 51</p> <p><b>3 Smart Systems Design Methodologies and Tools 55<br /></b>Nicola Bombieri, Franco Fummi, Giuliana Gangemi, Michelangelo Grosso,</p> <p>Enrico Macii, Massimo Poncino, and Salvatore Rinaudo</p> <p>3.1 Introduction 55</p> <p>3.2 Smart Electronic Systems and Their Design Challenges 56</p> <p>3.3 The Smart Systems Codesign before SMAC 57</p> <p>3.4 The SMAC Platform 60</p> <p>3.4.1 The Platform Overview 61</p> <p>3.4.1.1 System C–SystemVue Cosimulation 61</p> <p>3.4.1.2 ADS and the Thermal Simulation 63</p> <p>3.4.1.3 EMPro Extension and ADS Integration 64</p> <p>3.4.1.4 Automated EM – Circuit Cosimulation in ADS 64</p> <p>3.4.1.5 HIF Suite Toolsuite 65</p> <p>3.4.1.6 The MEMS+ Platform 66</p> <p>3.4.2 The (Co)Simulation Levels and the Design–Domains Matrix 67</p> <p>3.5 Case Study: A Sensor Node for Drift-Free Limb Tracking 69</p> <p>3.5.1 System Architecture 71</p> <p>3.5.2 Model Development and System-Level Simulation 71</p> <p>3.5.3 Results 73</p> <p>3.6 Conclusions 76</p> <p>Acknowledgments 77</p> <p>References 77</p> <p>Part Three Sensor Technologies 81</p> <p><b>4 Microelectromechanical Systems (MEMS) 83<br /></b><i>Li Yunjia</i></p> <p>4.1 Introduction 83</p> <p>4.1.1 What Is MEMS 83</p> <p>4.1.2 Why MEMS 84</p> <p>4.1.3 MEMS Sensors 84</p> <p>4.1.4 Goal of This Chapter 85</p> <p>4.2 Materials 85</p> <p>4.2.1 Silicon 85</p> <p>4.2.2 Dielectrics 86</p> <p>4.2.3 Metals 87</p> <p>4.3 Microfabrication Technologies 87</p> <p>4.3.1 Silicon Wafers 87</p> <p>4.3.2 Lithography 88</p> <p>4.3.3 Etching 91</p> <p>4.3.4 Deposition Techniques 93</p> <p>4.3.5 Other Processes 94</p> <p>4.3.6 Surface and Bulk Micromachining 95</p> <p>4.4 MEMS Sensor 95</p> <p>4.4.1 Resistive Sensors 95</p> <p>4.4.2 Capacitive Sensors 99</p> <p>4.5 Sensor Systems 103</p> <p>References 104</p> <p><b>5 Fiber-Optic Sensors 107<br /></b><i>Yi Yang, Kevin Chen, and Nikhil Gupta</i></p> <p>5.1 Introduction to Fiber-Optic Sensors 107</p> <p>5.1.1 Sensing Principles 108</p> <p>5.1.2 Types of Optical Fibers 108</p> <p>5.2 Trends in Sensor Fabrication and Miniaturization 110</p> <p>5.3 Fiber-Optic Sensors for Structural Health Monitoring 112</p> <p>5.3.1 Sensors for Cure Monitoring of Composites 114</p> <p>5.3.2 Embedded FOS in Composite Materials 114</p> <p>5.3.3 Surface-Mounted FOS in Composite Materials 115</p> <p>5.3.4 FOS for Structural Monitoring 115</p> <p>5.3.4.1 Aerospace Structures 115</p> <p>5.3.4.2 Civil Structures 116</p> <p>5.3.4.3 Marine Structures 116</p> <p>5.4 Frequency Modulation Sensors 117</p> <p>5.4.1 Bragg Grating Sensors 117</p> <p>5.4.2 Fabry–Pérot Interferometer Sensor 118</p> <p>5.4.3 Whispering Gallery Mode Sensors 119</p> <p>5.5 Intensity Modulation Sensors 122</p> <p>5.5.1 Fiber Microbend Sensors 122</p> <p>5.5.2 Fiber-Optic Loop Sensor 123</p> <p>5.6 Some Challenges in SHM of Composite Materials 128</p> <p>5.7 Summary 128</p> <p>Acknowledgments 129</p> <p>References 129</p> <p><b>6 Electronics Development for Integration 137<br /></b><i>Jan Vanfleteren</i></p> <p>6.1 Introduction 137</p> <p>6.1.1 Standard Flat Rigid Printed Circuits Boards and Components Assembly 137</p> <p>6.1.2 Flexible Circuits 138</p> <p>6.1.3 Need for Alternative Circuit and Packaging Materials 140</p> <p>6.2 Chip Package Miniaturization Technologies 140</p> <p>6.2.1 Ultrathin Chip Package Technology 140</p> <p>6.2.2 UTCP Circuit Integration 142</p> <p>6.2.2.1 UTCP Embedding 142</p> <p>6.2.2.2 UTCP Stacking 143</p> <p>6.2.3 Applications 143</p> <p>6.3 Elastic Circuits 145</p> <p>6.3.1 Printed Circuit Board-Based Elastic Circuits 145</p> <p>6.3.2 Thin Film Metal-Based Elastic Circuits 148</p> <p>6.3.3 Applications 148</p> <p>6.3.3.1 Wearable Light Therapy 148</p> <p>6.3.4 Stretchable Displays 149</p> <p>6.4 2.5D Rigid Thermoplastic Circuits 152</p> <p>6.5 Large Area Textile-Based Circuits 153</p> <p>6.5.1 Electronic Module Integration Technology 154</p> <p>6.5.2 Applications 155</p> <p>6.6 Conclusions and Outlook 157</p> <p>References 157</p> <p>Part Four Material Integration Solutions 159</p> <p><b>7 Sensor Integration in Fiber-Reinforced Polymers 161<br /></b><i>Maryam Kahali Moghaddam, Mariugenia Salas, Michael Koerdt, Christian Brauner, Martina Hübner, Dirk</i> <i>Lehmhus, and Walter Lang</i></p> <p>7.1 Introduction to Fiber-Reinforced Polymers 161</p> <p>7.2 Applications of Integrated Systems in Composites 164</p> <p>7.2.1 Production Process Monitoring and Quality Control of Composites 164</p> <p>7.2.1.1 Monitoring of the Resin Flow 166</p> <p>7.2.1.2 Analytical Modeling of Resin Front by Means of Simulation 166</p> <p>7.2.1.3 Monitoring the Resin Curing 166</p> <p>7.2.2 In-Service Applications of Integrated Systems 167</p> <p>7.2.2.1 Use for Structural Health Monitoring (SHM) 167</p> <p>7.2.2.2 Use As Support to Nondestructive Evaluation and Testing (NDE/NDT) 170</p> <p>7.3 Fiber-Reinforced Polymer Production and Sensor Integration Processes 170</p> <p>7.3.1 Overview of Fiber-Reinforced Polymer Production Processes 170</p> <p>7.3.2 Sensor Integration in Fiber-Reinforced Polymers: Selected Case Studies 175</p> <p>7.4 Electronics Integration and Data Processing 179</p> <p>7.4.1 Materials Integration of Electronics 180</p> <p>7.4.2 Electronics for Wireless Sensing 181</p> <p>7.5 Examples of Sensors Integrated in Fiber-Reinforced Polymer Composites 183</p> <p>7.5.1 Ultrasound Reflection Sensing 183</p> <p>7.5.2 Pressure Sensors 184</p> <p>7.5.3 Thermocouples 186</p> <p>7.5.4 Fiber Optic Sensors 187</p> <p>7.5.5 Interdigital Planar Capacitive Sensors 188</p> <p>7.6 Conclusion 192</p> <p>Acknowledgments 193</p> <p>References 193</p> <p><b>8 Integration in Sheet Metal Structures 201<br /></b><i>Welf-Guntram Drossel, Roland Müller, Matthias Nestler, and Sebastian Hensel</i></p> <p>8.1 Introduction 201</p> <p>8.2 Integration Technology 204</p> <p>8.3 Forming of Piezometal Compounds 205</p> <p>8.4 Characterization of Functionality 208</p> <p>8.5 Fields of Application 211</p> <p>8.6 Conclusion and Outlook 212</p> <p>References 212</p> <p><b>9 Sensor and Electronics Integration in Additive Manufacturing 217<br /></b><i>Dirk Lehmhus and Matthias Busse</i></p> <p>9.1 Introduction to Additive Manufacturing 217</p> <p>9.2 Overview of AM Processes 224</p> <p>9.3 Links between Sensor Integration and Additive Manufacturing 228</p> <p>9.4 AM Sensor Integration Case Studies 230</p> <p>9.4.1 Cavity-Based Sensor and Electronic System Integration 236</p> <p>9.4.2 Multiprocess Hybrid Manufacturing Systems 239</p> <p>9.4.3 Toward a Single AM Platform for Structural Electronics Fabrication 243</p> <p>9.5 Conclusion and Outlook 245</p> <p>Abbreviations 246</p> <p>References 248</p> <p>Part Five Signal and Data Processing: The Sensor Node Level 257</p> <p><b>10 Analog Sensor Signal Processing and Analog-to-Digital Conversion 259<br /></b><i>John Horstmann, Marco Ramsbeck, and Stefan Bosse</i></p> <p>10.1 Operational Amplifiers 260</p> <p>10.2 Analog-to-Digital Converter Specifications 262</p> <p>10.3 Data Converter Architectures 268</p> <p>10.4 Low-Power ADC Designs and Power Classification 276</p> <p>10.5 Moving Window ADC Approach 277</p> <p>References 279</p> <p><b>11 Digital Real-Time Data Processing with Embedded Systems 281<br /></b><i>Stefan Bosse and Dirk Lehmhus</i></p> <p>11.1 Levels of Information 281</p> <p>11.2 Algorithms and Computational Models 283</p> <p>11.3 Scientific Data Mining 287</p> <p>11.4 Real-Time and Parallel Processing 291</p> <p>References 297</p> <p><b>12 The Known World: Model-Based Computing and Inverse Numeric 301<br /></b><i>Armin Lechleiter and Stefan Bosse</i></p> <p>12.1 Physical Models in Parameter Identification 302</p> <p>12.2 Noisy Data Due to Sensor and Modeling Errors 304</p> <p>12.3 Coping with Noisy Data: Tikhonov Regularization and Parameter Choice Rules 306</p> <p>12.4 Tikhonov Regularization 308</p> <p>12.5 Rules for the Choice of the Regularization Parameter 309</p> <p>12.6 Explicit Minimizers for Linear Models 311</p> <p>12.7 The Soft-Shrinkage Iteration 312</p> <p>12.8 Iterative Regularization Schemes 313</p> <p>12.9 Gradient Descent Schemes 314</p> <p>12.10 Newton-Type Regularization Schemes 317</p> <p>12.11 Numerical Examples in Load Reconstruction 318</p> <p>References 326</p> <p><b>13 The Unknown World: Model-Free Computing and Machine Learning 329<br /></b><i>Stefan Bosse</i></p> <p>13.1 Machine Learning – An Overview 329</p> <p>13.2 Learning of Data Streams 331</p> <p>13.3 Learning with Noise 333</p> <p>13.4 Distributed Event-Based Learning 333</p> <p>13.5 ε-Interval and Nearest-Neighborhood Decision Tree Learning 334</p> <p>13.6 Machine Learning – A Sensorial Material Demonstrator 336</p> <p>References 340</p> <p><b>14 Robustness and Data Fusion 343<br /></b><i>Stefan Bosse</i></p> <p>14.1 Robust System Design on System Level 345</p> <p>References 348</p> <p>Part Six Networking and Communication: The Sensor Network Level 349</p> <p><b>15 Communication Hardware 351<br /></b><i>Tim Tiedemann</i></p> <p>15.1 Communication Hardware in Their Applications 351</p> <p>15.2 Requirements for Embedded Communication Hardware 352</p> <p>15.3 Overview of Physical Communication Classes 354</p> <p>15.4 Examples of Wired Communication Hardware 356</p> <p>15.5 Examples of Wireless Communication Hardware 358</p> <p>15.6 Examples of Optical Communication Hardware 360</p> <p>15.7 Summary 360</p> <p>References 361</p> <p><b>16 Networks and Communication Protocols 363<br /></b><i>Stefan Bosse</i></p> <p>16.1 Network Topologies and Network of Networks 364</p> <p>16.2 Redundancy in Networks 365</p> <p>16.3 Protocols 366</p> <p>16.4 Switched Networks versus Message Passing 368</p> <p>16.5 Bus Systems 369</p> <p>16.6 Message Passing and Message Formats 370</p> <p>16.7 Routing 370</p> <p>16.8 Failures, Robustness, and Reliability 377</p> <p>16.9 Distributed Sensor Networks 378</p> <p>16.10 Active Messaging and Agents 381</p> <p>References 382</p> <p><b>17 Distributed and Cloud Computing: The Big Machine 385<br /></b><i>Stefan Bosse</i></p> <p>17.1 Reference 386</p> <p><b>18 The Mobile Agent and Multiagent Systems 387<br /></b><i>Stefan Bosse</i></p> <p>18.1 The Agent Computation and Interaction Model 389</p> <p>18.2 Dynamic Activity-Transition Graphs 394</p> <p>18.3 The Agent Behavior Class 395</p> <p>18.4 Communication and Interaction of Agents 396</p> <p>18.5 Agent Programming Models 397</p> <p>18.6 Agent Processing Platforms and Technologies 404</p> <p>18.7 Agent-Based Learning 415</p> <p>18.8 Event and Distributed Agent-Based Learning of</p> <p>Noisy Sensor Data 416</p> <p>References 420</p> <p>Part Seven Energy Supply 423</p> <p><b>19 Energy Management and Distribution 425<br /></b><i>Stefan Bosse</i></p> <p>19.1 Design of Low-Power Smart Sensor Systems 426</p> <p>19.2 A Toolbox for Energy Analysis and Simulation 430</p> <p>19.3 Dynamic Power Management 434</p> <p>19.3.1 CPU-Centric DPM 435</p> <p>19.3.2 I/O-Centric DPM 437</p> <p>19.3.3 EDS Algorithm 438</p> <p>19.4 Energy-Aware Communication in Sensor Networks 440</p> <p>19.5 Energy Distribution in Sensor Networks 442</p> <p>19.5.1 Distributed Energy Management in Sensor Networks</p> <p>Using Agents 443</p> <p>References 446</p> <p><b>20 Microenergy Storage 449<br /></b><i>Robert Kun, Chi Chen, and Francesco Ciucci</i></p> <p>20.1 Introduction 449</p> <p>20.2 Energy Harvesting/Scavenging 451</p> <p>20.3 Energy Storage 452</p> <p>20.3.1 Capacitors 452</p> <p>20.3.2 Batteries 458</p> <p>20.3.3 Fuel Cells 467</p> <p>20.3.3.1 Low-Temperature Fuel Cells 469</p> <p>20.3.3.2 High-Temperature Fuel Cells 469</p> <p>20.3.4 Other Storage Systems 469</p> <p>20.4 Summary and Perspectives 470</p> <p>References 470</p> <p><b>21 Energy Harvesting 479<br /></b><i>Rolanas Dauksevicius and Danick Briand</i></p> <p>21.1 Introduction 479</p> <p>21.2 Mechanical Energy Harvesters 480</p> <p>21.2.1 Piezoelectric Micropower Generators 482</p> <p>21.2.2 Micropower Generators Based on Electroactive Polymers 489</p> <p>21.2.3 Electrostatic Micropower Generators 490</p> <p>21.2.4 Electromagnetic Micropower Generators 491</p> <p>21.2.5 Triboelectric Nanogenerators 492</p> <p>21.2.6 Hybrid Micropower Generators 493</p> <p>21.2.7 Wideband and Nonlinear Micropower Generators 494</p> <p>21.2.8 Concluding Remarks 495</p> <p>21.3 Thermal Energy Harvesters 496</p> <p>21.3.1 Introduction to Thermoelectric Generators 496</p> <p>21.3.2 Thermoelectric Materials and Efficiency 499</p> <p>21.3.3 Other Thermal-to-Electrical Energy Conversion</p> <p>Techniques 501</p> <p>21.4 Radiation Harvesters 502</p> <p>21.4.1 Light Energy Harvesters 502</p> <p>21.4.2 RF Energy Harvesters 506</p> <p>21.5 Summary and Perspectives 507</p> <p>References 512</p> <p>Part Eight Application Scenarios 529</p> <p><b>22 Structural Health Monitoring (SHM) 531<br /></b><i>Dirk Lehmhus and Matthias Busse</i></p> <p>22.1 Introduction 531</p> <p>22.2 Motivations for SHM System Implementation 536</p> <p>22.3 SHM System Classification and Main Components 540</p> <p>22.3.1 Sensor and Actuator Elements for SHM Systems 542</p> <p>22.3.2 Communication in SHM Systems 550</p> <p>22.3.3 SHM Data Evaluation Approaches and Principles 552</p> <p>22.4 SHM Areas and Application and Case Studies 555</p> <p>22.5 Implications of Material Integration for SHM Systems 561</p> <p>22.6 Conclusion and Outlook 562</p> <p>References 564</p> <p><b>23 Achievements and Open Issues Toward Embedding Tactile Sensing and Interpretation into Electronic Skin Systems 571<br /></b><i>Ali Ibrahim, Luigi Pinna, Lucia Seminara, and Maurizio Valle</i></p> <p>23.1 Introduction 571</p> <p>23.2 The Skin Mechanical Structure 573</p> <p>23.2.1 Transducers and Materials 573</p> <p>23.2.2 An Example of Skin Integration into an Existing Robotic Platform 575</p> <p>23.3 Tactile Information Processing 579</p> <p>23.4 Computational Requirements 582</p> <p>23.4.1 Electrical Impedance Tomography 582</p> <p>23.4.2 Tensorial Kernel 583</p> <p>23.5 Conclusions 585</p> <p>References 585</p> <p><b>24 Intelligent Materials in Machine Tool Applications: A Review 595<br /></b><i>Hans-Christian Möhring</i></p> <p>24.1 Applications of Shape Memory Alloys (SMA) 596</p> <p>24.2 Applications of Piezoelectric Ceramics 596</p> <p>24.3 Applications of Magnetostrictive Materials 598</p> <p>24.4 Applications of Electro- and Magnetorheological</p> <p>Fluids 600</p> <p>24.5 Intelligent Structures and Components 601</p> <p>24.6 Summary and Conclusion 603</p> <p>References 604</p> <p><b>25 New Markets/Opportunities through Availability of Product Life Cycle Data 613<br /></b><i>Thorsten Wuest, Karl Hribernik, and Klaus-Dieter Thoben</i></p> <p>25.1 Product Life Cycle Management 613</p> <p>25.1.1 Closed-Loop and Item-Level PLM 615</p> <p>25.1.2 Data and Information in PLM 615</p> <p>25.1.3 Supporting Concepts for Data and Information Integration in PLM 616</p> <p>25.2 Case Studies 617</p> <p>25.2.1 Case Study 1: Life Cycle of Leisure Boats 617</p> <p>25.2.1.1 Sensors Used 618</p> <p>25.2.1.2 Potential Application of Sensorial Materials 619</p> <p>25.2.1.3 Limitations and Opportunities of Sensorial Materials 619</p> <p>25.2.2 Case Study 2: PROMISE – Product Life Cycle Management and Information Using Smart Embedded Systems 620</p> <p>25.2.2.1 Sensors Used 620</p> <p>25.2.2.2 Potential Application of Sensorial Materials 621</p> <p>25.2.2.3 Limitations and Opportunities of Sensorial Materials 621</p> <p>25.2.3 Case Study 3: Composite Bridge 622</p> <p>25.2.3.1 Sensors Used 623</p> <p>25.2.3.2 Potential Application of Sensorial Materials 623</p> <p>25.2.3.3 Limitations and Opportunities of Sensorial Materials 623</p> <p>25.3 Potential of Sensorial Materials in PLM Application 623</p> <p>Acknowledgment 624</p> <p>References 624</p> <p><b>26 Human–Computer Interaction with Novel and Advanced Materials 629<br /></b><i>Tanja Döring, Robert Porzel, and Rainer Malaka</i></p> <p>26.1 Introduction 629</p> <p>26.2 New Forms of Human–Computer Interaction 630</p> <p>26.3 Applications and Scenarios 633</p> <p>26.3.1 Domestic and Personal Devices 633</p> <p>26.3.1.1 The Marble Answering Machine 633</p> <p>26.3.1.2 Living Wall: An Interactive Wallpaper 634</p> <p>26.3.1.3 Sprout I/O and Shutters: Ambient Textile Information Displays 634</p> <p>26.3.1.4 FlexCase: A Flexible Sensing and Display Cover 635</p> <p>26.3.2 Learning, Collaboration, and Entertainment 635</p> <p>26.3.2.1 Tangibles for Learning and Creativity 635</p> <p>26.3.2.2 inFORM: Supporting Remote Collaboration through Shape Capture and Actuation 636</p> <p>26.3.2.3 The Soap Bubble Interface 637</p> <p>26.4 Opportunities and Challenges 637</p> <p>26.5 Conclusions 639</p> <p>References 639</p> <p>Index 645</p>
Stefan Bosse studied physics at the University of Bremen, Germany, from which he also received his PhD. Since 2008 he is actively involved in different projects in the University of Bremen's Scientific Center ISIS (Integrated Solutions in Sensorial Structure Engineering) pushing interdisciplinary research, and recently joined the ISIS council.<br /> <br />Dirk Lehmhus joined the Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM) in Bremen, Germany, in 1998 and subsequently obtained a PhD in production technology from Bremen University for optimization studies of aluminium foam production processes and properties. Since May 2009 he is Managing Director at the University of Bremen's Scientific Centre ISIS dedicated to the development of sensorial materials and sensor-equipped structures.<br /> <br /> Walter Lang joined the Fraunhofer Institute for Solid State Technology (EMFT) in Munich, Germany, in 1987 where he worked on microsystems technology. In 1995, he became Head of the Sensors Department in the Institute of Micromachining and Information Technology of the Hahn Schickard Society. In 2003, he joined the University of Bremen where he is currently heading the Institute for Microsensors, -actuators and -systems at the Microsystems Center Bremen.<br /> <br /> Matthias Busse holds the chair for near net-shape manufacturing technology in the Faculty of Production Engineering at the University of Bremen since 2003. At the same time, he became Director of the Fraunhofer IFAM. After his PhD in mechanical engineering he worked in various positions at Volkswagen Central Research, ultimately as Head of Production Research. Matthias Busse represents the University of Bremen's Scientific Centre ISIS as speaker of the board of directors.

Diese Produkte könnten Sie auch interessieren: