Table of Contents

PRINCIPLES  OF
PUBLIC HEALTH

A SIMPLE TEXT BOOK ON HYGIENE PRESENTING THE PRINCIPLES FUNDAMENTAL TO THE CONSERVATION OF INDIVIDUAL AND COMMUNITY HEALTH

By THOS. D. TUTTLE, B.S., M.D.

SECRETARY AND EXECUTIVE OFFICER OF
THE STATE BOARD OF HEALTH OF MONTANA

 

 

CONSERVATION OF HEALTH

"Our national health is physically our greatest asset. To prevent any possible deterioration of the American stock should be a national ambition."—Theodore Roosevelt.

 

The conservation of individual and national health is the keynote of these books

PRINCIPLES OF PUBLIC HEALTH

By Thos. D. Tuttle, M.D., Secretary and Executive Officer of the State Board of Health of Montana. Illustrated. Cloth. vii + 186 pages. List price 50 cents, mailing price 60 cents.

PRIMER OF HYGIENE

By John W. Ritchie, of the College of William and Mary in Virginia, and Joseph S. Caldwell, of the George Peabody College for Teachers, Nashville, Tennessee. Illustrated. Cloth. vi + 184 pages. List price 40 cents, mailing price 48 cents.

PRIMER OF SANITATION

By John W. Ritchie. Illustrated. Cloth. vi + 200 pages. List price 50 cents, mailing price 60 cents.

HUMAN PHYSIOLOGY

By John W. Ritchie. Illustrated in black and colors. Cloth. vi + 362 pages. List price 80 cents, mailing price 96 cents.

WORLD BOOK COMPANY

CASPAR W. HODGSON, Manager

YONKERS-ON-HUDSON, NEW YORK

Copyright, 1910, by World Book Company. All rights reserved

 

INTRODUCTION

The earliest history of remote ages describes methods employed in combating disease, and down through all the centuries the struggle against infection has been going on. The science of health as applied in recent years reveals wonderful progress in the avoidance of disease, and in the control of the violent epidemics by which in the past nations were almost exterminated. Modern methods of hygiene and sanitation as applied to public health have robbed smallpox and diphtheria of their death-dealing power; cholera and yellow fever have been forced to retreat before the victorious hosts of applied medical science; tuberculosis, the greatest foe of human life, is slowly but surely receding before the determined efforts of modern preventive medicine.

By nature man is endowed with resistive power sufficient to ward off most forms of disease, provided he keeps his health at a normal standard by right living. If, however, he allows his health to become impaired by reason of overwork, bad habits, wilful exposure to contagion or unhealthful surroundings, he readily falls a prey to disease.

The author of Principles of Public Health has here set forth the general rules of life by the observance of which every adult and every child not only can do much to preserve his own health but also can prove himself a prominent factor in raising the standard of public health. A campaign of education is demanded to arrest the enormous loss of life which is carrying so many to untimely graves, and the instruction given in this volume will be of inestimable value in teaching people how to avoid avoidable disease.

The author has not attempted to deal with all the diseases that may be classed as preventable; as the work is intended for use in the public schools, only such diseases are mentioned as it seems fitting to present to school children. To teach our children a proper respect for their own health and for the community welfare is to fit them for the best citizenship.

E. A. Pierce, M. D.

Portland, Oregon

 

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation of the valuable assistance rendered in the preparation of this work by Dr. S. T. Armstrong, of New York City; Dr. H. Wheeler Bond, Commissioner of Health, St. Louis, Missouri; Dr. H. M. Bracken, Secretary and Executive Officer of the State Board of Health of Minnesota; J. S. Caldwell, Professor of Biology, George Peabody College for Teachers, Nashville, Tennessee; R. J. Condon, Superintendent of Schools, Providence, Rhode Island; Mrs. Nona B. Eddy, of the Public Schools of Helena, Montana; Dr. F. M. McMurray, of Teachers College, Columbia University, New York City; Miss Jessie B. Montgomery, Supervising Critic in Training School, State Normal School, Terre Haute, Indiana; Dr. E. A. Pierce, Secretary and Executive Officer of the State Board of Health of Oregon.

 

PART I
THE FIGHT FOR HEALTH

CHAPTER I

CONSTANT DANGER OF ILLNESS

Every boy and girl confidently expects to grow into a strong and healthy man or woman. How often we hear a child say, "When I am a man," or "When I am a woman;" but I have never heard a boy or a girl say, "If I live to be a man or woman." When you think of what you will do when you are grown into men or women, it never occurs to you that you may be weak and sickly and therefore not able to do the very things that you would most like to do. This suggests that sickness is not natural, else the thought that you may perhaps become sick would enter your mind. As a matter of fact, most sickness is not natural.

The fight for life

There is a constant struggle going on in the world. You see a fight about you every day among the animals. You see the spider catch the fly, the snake catch the frog, the bird catch the insect, and the big fish catch the minnow; and you have heard of wars where men kill one another.

The greatest enemies that men have to fight, however, are not other men, or wild animals, but foes that kill more men, women and children every year than were ever killed in the same length of time by war. These foes are small, very small, but you must not think that because things are small they are not dangerous. We call these foes disease germs.

anboco001.jpg anboco002.jpg

Fig. 1. Looking at cells
through a microscope.

Fig. 2. Some skin cells as seen
through a microscope.

The nature of a germ

The germ is a very, very small body; it is the smallest living body that we know. Later we shall learn that our bodies are made up of cells, and that these cells are extremely small—so small that it takes a very powerful microscope to see one of them. The germ is still smaller than the cells in our bodies, and it is made of a single cell. There are a great many kinds of germs in the world. Fortunately, most of them are not harmful. Some germs cause disease, but there are other germs that not only are not harmful, but are actually helpful to men. Among the helpful germs are those that enrich the ground, and these should be protected; but all germs that cause disease should be destroyed as rapidly as possible. These germs are fighting all the time against our health. They are not armed with guns and cannon, neither do they build forts from which to fight; but they get inside our bodies and attack us there.

 

How to fight germs

There are three principal ways by which we fight disease germs: first, by keeping our bodies so well and strong that germs cannot live in them; second, by keeping germs out of our bodies; third, by preventing germs from accumulating in the world—that is, by killing as many of them as possible.

If it is possible to keep so well and strong that disease germs cannot live in our bodies, you will naturally infer that there are other causes of sickness besides disease germs. That is true, for there are a great many things beside germs that cause our bodies to get into such a condition that disease germs can enter and grow and make us ill. We sometimes call this a "run-down" condition. Before we begin, then, to study the germs that cause disease, we must learn how to keep our bodies strong and ready to fight these germs.

Questions. 1. What evidence have we that sickness is not natural? 2. Name some of the fights going on in the animal world. 3. What can you say of the amount of illness caused by germs? 4. Tell what you have learned about germs. 5. Name three ways of fighting germs.

Remember. 1. Most sickness comes from failure to observe Nature's laws. 2. We must keep up a constant fight against germs that cause sickness. 3. We fight germs by killing as many of them as we can, and by keeping our bodies so strong that if a disease germ enters it cannot grow.

 

CHAPTER II

THE NECESSITY OF CARING FOR THE BODY

anboco003.jpg

Fig. 3. The organs of the body.

How the body is like an automobile

These bodies of ours are built somewhat like automobiles. An automobile is made up of a framework, wheels, body, gasoline tank, engine, and steering-gear. The human body has much the same form of construction. We have a frame, which is made of the bones of the body. We have arms and legs, which correspond to the wheels of the automobile. We have many little pockets in our bodies in which fat is stored, and these little pockets answer to the gasoline tank of the automobile. We have an engine which, like the automobile engine, is made up of many parts; and we have a head or brain, that plays the same part as the steering-gear of the automobile.

The automobile has a tank in which is carried the gasoline necessary to develop power for the machine. If the gasoline gives out, the engine will not run, and before the owner starts on a trip, he is always careful to see that the tank is well filled. In the same way, if we do not provide new fat for the pockets in our bodies in which the fat is stored, our supply will soon give out and our bodies will refuse to work, just as the engine of the automobile will refuse to work when the gasoline is used up.

What cells are like

The automobile is made of iron and wood and rubber, and each bit of iron and wood and rubber is made up of tiny particles. The body is made of bones and muscles, covered with skin, and all these are made up of very fine particles that we call cells. Every part of the body is made of these fine cells. The cells are so small that they can be seen only with a powerful microscope. If you look at your hand you cannot see a cell, because it takes a great many cells to make a spot large enough for you to see. In Figure 1 you see a boy looking through a microscope, and beside him you see a picture of what he sees. This picture does not look like the skin on your hand, neither does it look like the skin on the boy's hand; but it is nothing more nor less than a piece of skin taken from that boy's hand, and it looks just as a piece of skin from your own hand would look if you were to see it through a very strong microscope.

Why cells must not be killed

The whole body is made up of just such little cells as you see in Figure 4, and each cell is alive and has a certain work to perform. It is very important that we keep these cells from dying and that they perform the work for which they are intended, for if these cells die or fail to act, the body becomes sick or dies.

anboco004.jpg

Fig. 4. A cell. (a) Cell body; (b) nucleus; (c) nucleolus.

You can scratch some of the paint from your automobile and the machine will work just as well as ever. Apparently no harm has been done, but an opening has been made through which moisture and germs can enter and cause the wood to rot and the iron to rust. You can remove certain parts of the automobile and still the machine will do its work; but you cannot take away too much of any one part without weakening the automobile, and if certain parts are missing (such as the sparker, the battery, or the steering-gear), the usefulness of the machine is destroyed. So it is with the body. You can scratch off some of the skin and not do any apparent harm, but you have made an opening through which germs may get into the body. You can remove certain parts of the body, such as the arm or leg, and still the body will do efficient service. But there are certain parts of the body that are necessary to life, just as certain parts of the automobile are necessary to the usefulness of the machine. You cannot remove the heart and live; you cannot remove the brain and live.

 

How cells are killed

You are probably thinking that it must be easy to kill such a little thing as a cell; and so it is. Cells can be killed by too much heat or too much cold. When you skin your hand, you kill many cells, and at the same time make an opening for germs to get in and cause sickness. You can kill cells also by starving them, for they must have not only enough food, but the right kind of food. If you feed your bodies on nothing but candy, pie, and cake, most of the cells will refuse to perform their work and many of them will die. These cells must have also an abundance of air, and the air must be pure and fresh. If you breathe the air that others have breathed or that contains poison of any kind, you will soon find that you are not feeling well. This simply means that so many of the cells are being starved for fresh air, that not enough strong ones are left to do the necessary work. You can kill these cells by overwork, for they must have a proper amount of rest. If you go to school all day long and then sit up until midnight every night, you must not expect the cells of your body to keep strong and well. You can kill these cells by the use of certain things that act as poisons to them, such as tobacco, beer, wine, or whisky.

Questions. 1. In what way is the body like an automobile? 2. What are cells like? 3. Why must cells not be killed? 4. Name five ways by which we kill cells.

Remember. 1. Each part of the body is important to the welfare of the whole body. 2. Each part of the body is made up of very small particles that we call cells; each cell in the body is alive and has a certain work to perform. 3. Cells are very easily weakened and killed. 4. There are five principal ways by which we kill the cells in our bodies: by too much heat or cold; by not giving them the proper kinds of foods; by not giving them enough fresh air; by giving them too much work to do; and by poisoning them.

 

CHAPTER III

HOW CLOTHING AFFECTS HEALTH

anboco005.jpg

Fig. 5. Warm, dry clothing necessary for health.

Why the body should be equally covered

The body should always be kept at as nearly uniform a temperature as possible. In order to do this we wear clothing. Clothing keeps out the heat on a hot day, just as it keeps the heat in and the cold out on a cold day. The clothing should be equally heavy on all parts of the body. It is not right to wear a thick dress over your chest and leave your shoulders and arms bare, or nearly so. People who do this are killing a great many cells by letting part of their bodies become chilled while the rest is warm, probably too warm.

Why clothing should not be too heavy

The clothing should be just heavy enough to keep the body warm. If you wear such heavy clothing indoors that you are constantly perspiring, your underclothes become damp, and when you go out, even though you put on your overcoat, your body becomes chilled. If you begin to sneeze, that is Nature's way of telling you that you are killing many of your cells by too much cold.

People sometimes get warm from exercising, and then take off their coats. They should have removed their coats before they began to exercise. If you take off your coat after you are too warm, your body becomes chilled. Baseball pitchers know this, and if you watch a good pitcher, you will see that he always puts on his sweater as soon as he stops pitching, even though he is very warm. He knows that if he cools off too quickly, he will become stiff and sore and cannot pitch good ball.

When a draft is dangerous

Sometimes a person sits in a warm room until he begins to perspire freely. Then he opens a window and sits in the draft. Under ordinary conditions, the cool wind alone would chill the body, but now the rapid drying of the perspiration makes the body cool still more quickly. The sudden chill causes the person to take cold, which is simply another way of saying that he has killed many cells and caused others to fall sick, so that they cannot perform their work. We cannot get too much fresh air. Drafts do not hurt us if we are thoroughly wrapped up; but it is very dangerous to allow the wind to strike the body when it is not well protected, and especially when it is damp with perspiration.

 

anboco006.jpg

Fig. 6. Properly prepared for wet weather.

Why damp clothing is dangerous

Damp clothing chills the body very rapidly and kills many cells. Indeed, if a single one of the germs that cause pneumonia were to enter your lungs while you were wearing damp clothing, it would grow so rapidly that you might have pneumonia in a very little while. That is why it is important to change your shoes and stockings as soon as you get them wet, and to take off immediately any clothing that becomes damp. It is hard for boys and girls to keep their feet dry in the winter and spring months, and rubbers are a nuisance; but if you expect to grow into the strong man or woman you picture yourself becoming, you must take care to wear your rubbers. Otherwise you may become weak and sickly, and never be able to do the things you hope to do.

The feet are not the only part of the body that needs to be kept dry. A wet coat is just as harmful as wet shoes and stockings; hence, you should always carry an umbrella or wear a raincoat when you go out into the rain. Umbrellas are unhandy for boys and girls to carry, but if you will remember that thousands of little cells in your body are being injured when you get wet and chilled, you will be willing to take your umbrella.

 

When to wear an overcoat

In cold weather the same amount of clothing should not be worn in the house and outdoors; for this reason, we have overcoats. If you wear your overcoat in the house, you will become overwarm and your underclothing will then become damp with perspiration; when you go outdoors into the cold air, this dampness will have just the same effect as would dampness that comes from outside.

anboco007-008.jpg

Figs. 7 and 8. If you keep your overcoat on in the house, your underclothes become damp from perspiration, and when you go outdoors your body becomes chilled.

As soon as the weather gets cold, put on your overcoat every time you go outdoors, and take it off as soon as you come into the house. This is troublesome for boys and girls to do, because they want to run in and out of the house so often; but on the other hand, think of all the cells you will kill if you do not do this, and you will certainly consider it worth while to take off your coat and put it on again.

 

Questions. 1. How does keeping the body equally covered protect the cells? 2. Give reasons for not wearing too heavy clothing. 3. When is it safe to sit in a draft, and when dangerous? 4. What is the danger of keeping on wet shoes or other damp clothing? 5. When and why should overcoats be worn?

Remember. 1. Clothing should be just heavy enough to keep the body warm all the time. 2. Never take off your coat or sit in a draft when you are too warm. 3. Since wearing damp clothing causes a great deal of sickness, change your clothes as soon as they become wet or damp. 4. Do not forget to take your umbrella when it is raining and to wear your rubbers when the ground is wet. 5. In cold weather wear your overcoat when you are outdoors, but take it off when you come into the house.

 

CHAPTER IV

THE USES OF FOOD

We kill a great many of the cells in our bodies by starving them; either we do not give them enough food or we do not supply the right kind of food.

Why the body needs new cells

Not only must we feed the cells in our bodies, but we must be constantly making new ones, for in all our work or play, awake or asleep, we are constantly using up certain cells. These cells are used to make the body go, just as the engine uses coal to form the steam that gives it power to run. Boys and girls grow fast and, of course, if they expect to become well men and women, they must make a great many new cells all the time, in addition to those used in doing the work of the body. If we are to make new cells we must have the right kind of food with which to make them.

How the body keeps itself warm

We want to do something besides make new cells; we want to keep warm and well the cells we already have. No amount of clothing would keep you warm if you were not making heat inside your body all the time, any more than you could make a telephone post warm by putting your coat on it. Therefore it is necessary to have food that makes heat in the body, in addition to food that builds cells.

We eat a great many kinds of foods, and all that we eat is used either for building new cells or for producing heat in the body. Thus we can divide all our foods into two classes—building material and heat-producing material. The type of building material is lean meat, and the type of heat-producing material is fat meat and starches, such as potatoes and bread. Milk contains much building material as well as heat-producing material. That is why a baby grows and keeps warm while he takes nothing but milk.

The building foods

Lean meat is the best of all building foods. Eggs are largely a form of lean meat, and hence constitute a good article of food for building purposes. Certain vegetables contain a large per cent of building material; this is especially true of dried beans and peas. Wheat flour and corn meal (particularly when made of whole wheat and unbolted meal) contain much building material.

It is possible for one to live and grow when eating only vegetable matter. But the boy or girl who tries to become a strong man or woman by eating only vegetables will be disappointed; these are mostly heat-producing foods and will not make strong bodies. Experience has proved that the best results are obtained by eating what is called "a mixed diet," that is, a diet composed partly of lean meats and partly of fats and vegetables.

The heat-producing foods

Of the heat-producing foods, fat is the most powerful. Most of the fat that we eat is used immediately for producing in the body heat, and therefore power, but a part of it is stored up for future use. We see it in all healthy young persons. It is this stored-up fat that gives the body its rounded form. When any one has been sick he is thin, because, to produce heat and power while he was sick, he has had to use the fat stored up in his body. To have such a supply of fat is like having a bank account to draw on when out of work. We might call the deposits of fat in our bodies our health banks.

Fat meat is not the only form in which we eat fats; we eat them in a great many other ways. Certain vegetables, such as beans, contain an oil that forms fat. Ripe olives contain a great deal of fatty oil. Butter is a very important form of fat, and cream contains a large amount of it.

Cost of suitable foods

In selecting our foods we should think of two things: first, the value of the food as a heat-producer or as a building material; and second, the cost of the food. We may like butter much better than bacon, but we should remember that, pound for pound, bacon has a greater nourishing power than butter, and a pound of bacon will cost far less than a pound of butter.[1]