Details

Constructed Wetlands for Industrial Wastewater Treatment


Constructed Wetlands for Industrial Wastewater Treatment


Challenges in Water Management Series 1. Aufl.

von: Alexandros I. Stefanakis

134,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 26.06.2018
ISBN/EAN: 9781119268321
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A groundbreaking book on the application of the economic and environmentally effective treatment of industrial wastewater</b><i> </i></p> <p><i>Constructed Wetlands for Industrial Wastewater Treatment </i>contains a review of the state-of-the-art applications of constructed wetland technology for industrial wastewater treatment. This green technology offers many economic, environmental, and societal advantages. The text examines the many unique uses and the effectiveness of constructed wetlands for the treatment of complex and heavily polluted wastewater from various industrial sources.</p> <p>The editor — a noted expert in the field — and the international author team (93 authors from 22 countries) present vivid examples of the current state of constructed wetlands in the industrial sector. The text is filled with international case studies and research outcomes and covers a wide range of applications of these sustainable systems including facilities such as the oil and gas industry, agro-industries, paper mills, pharmaceutical industry, textile industry, winery, brewery, sludge treatment and much more. The book reviews the many system setups, examines the different removal and/or transformational processes of the various pollutants and explores the overall effectiveness of this burgeoning technology. This important resource:</p> <ul> <li>Offers the first, groundbreaking text on constructed wetlands use for industrial wastewater treatment</li> <li>Provides a single reference with summarized information and the state-of-the-art knowledge of the use of Constructed Wetlands in the industrial sector through case studies, research outcomes and review chapters</li> <li>Covers a range of industrial applications such as hydrocarbons/oil and gas industry, food and beverage, wood and leather processing, agro-industries, pharmaceuticals and many others</li> <li>Includes best practices drawn by a collection of international case studies</li> <li>Presents the latest technological developments in the industry</li> </ul> Written for civil and environmental engineers, sustainable wastewater/water managers in industry and government, <i>Constructed Wetlands for Industrial Wastewater Treatment</i> is the first book to offer a comprehensive review of the set-up and effectiveness of constructed wetlands for a wide range of industrial applications to highlight the diverse economic and environmental benefits this technology brings to the industry.
<p> List of Contributors xvii</p> <p>Preface xxv</p> <p>Acknowledgements xxvii</p> <p><b>Introduction to Constructed Wetland Technology 1<br /></b><i>Alexandros I. Stefanakis</i></p> <p>1 From Natural to Constructed Wetlands 1</p> <p>2 The Need for Sustainable Solutions 3</p> <p>3 Constructed Wetlands or Conventional Systems – Pros and Cons 3</p> <p>4 Classification of Constructed Wetlands 6</p> <p>4.1 Free Water Surface Constructed Wetlands (FWS CWs) 7</p> <p>4.2 Horizontal Subsurface Flow Constructed Wetlands  (HSF CWs) 7</p> <p>4.3 Vertical Flow Constructed Wetlands  (VFCWs) 8</p> <p>4.4 Floating Treatment Wetlands (FTWs) 9</p> <p>4.5 Sludge Treatment Wetlands (STWs) 10</p> <p>4.6 Aerated Constructed Wetlands  11</p> <p>5 Design Considerations of Constructed Wetlands  11</p> <p>6 Constructed Wetlands  as a Sustainable Solution for the Industrial Sector 14</p> <p>7 Scope of this Book 16</p> <p>References 17</p> <p><b>Part I Petrochemical and Chemical Industry 23</b></p> <p><b>1 Integrated Produced Water Management in a Desert Oilfield Using Wetland Technology and Innovative Reuse Practices 25<br /></b><i>Alexandros I. Stefanakis, Stephane Prigent and Roman Breuer</i></p> <p>1.1 Introduction 25</p> <p>1.2 Constructed Wetland for Produced Water Treatment 27</p> <p>1.2.1 Location and Description 27</p> <p>1.2.2 Weather Station 28</p> <p>1.2.3 Chemical Analyses 30</p> <p>1.3 Results and Discussion 32</p> <p>1.3.1 Weather Data 32</p> <p>1.3.2 Water Quality 32</p> <p>1.3.3 Environmental Performance 35</p> <p>1.4 Treated Effluent Reuse for Saline Irrigation 36</p> <p>1.5 Conclusions 39</p> <p>References 39</p> <p><b>2 Constructed Wetlands  Treating Water Contaminated with Organic Hydrocarbons 43<br /></b><i>Martin Thullner, Alexandros I. Stefanakis and Saeed Dehestani</i></p> <p>2.1 Introduction 43</p> <p>2.1.1 Benzene Removal in Constructed Wetlands  44</p> <p>2.2 MTBE Removal in Constructed Wetlands  48</p> <p>2.3 Phenol Removal in Constructed Wetlands  51</p> <p>2.4 Combined Treatment of Different Compounds 54</p> <p>References 56</p> <p><b>Part II Food and Beverage Industry 65</b></p> <p><b>3 Aerated Constructed Wetlands  for Treatment of Municipal and Food Industry Wastewater 67<br /></b><i>A. Pascual, D. De la Varga, M. Soto, D. Van Oirschot, R.M. Kilian, J.A. Álvarez, P. Carvalho and C.A. Arias</i></p> <p>3.1 Introduction 67</p> <p>3.2 Aerated Constructed Wetlands  68</p> <p>3.2.1 Oxygen Transfer at theWater–Biofilm Interface 69</p> <p>3.2.2 Benefits of Artificial Aeration in Constructed Wetlands  70</p> <p>3.2.3 Dissolved Oxygen Profile along CWs 71</p> <p>3.2.4 TSS Removal 71</p> <p>3.2.5 COD Removal 71</p> <p>3.2.6 Nitrogen Removal 72</p> <p>3.3 HIGHWET Project 72</p> <p>3.3.1 KT Food Pilot Plant 73</p> <p>3.3.2 Research Operational Plan of KT Food Treatment Plant 73</p> <p>3.3.2.1 Campaign 1 77</p> <p>3.3.2.2 Campaign 2 78</p> <p>3.3.2.3 Campaign 3 80</p> <p>3.3.2.4 Campaign 4 82</p> <p>3.3.2.5 Campaign 5 84</p> <p>3.3.3 Comparison of Results 85</p> <p>3.4 Conclusions 87</p> <p>Acknowledgements 88</p> <p>References 88</p> <p><b>4 Treatment of Wineries and Breweries Effluents using Constructed Wetlands  95<br /></b><i>F. Masi, A. Rizzo, and R. Bresciani</i></p> <p>4.1 Introduction 95</p> <p>4.2 Wastewater Production and Characterization 96</p> <p>4.2.1 Wineries 96</p> <p>4.2.2 Breweries 96</p> <p>4.3 Applications and Configurations 97</p> <p>4.3.1 Wineries 97</p> <p>4.3.1.1 Multistage CW with Nature-Based Composting as Pretreatment for Wastewater: An Italian Case Study 98</p> <p>4.3.1.2 Multistage CW with Technological Composting as Pretreatment for Wastewater: A Spanish Case Study 99</p> <p>4.3.1.3 Multistage CW with Technological Aerobic Reactor and Subsequent Composting on CW: A French Case Study 100</p> <p>4.3.2 Breweries 101</p> <p>4.4 Discussion and Conclusions 101</p> <p>4.4.1 Advantages and Disadvantages of Different Multistage CW Treatment Plants 101</p> <p>4.4.2 Future Perspectives of CW for Brewery Waste water Treatment 103</p> <p>References 103</p> <p><b>5 Treatment of Effluents from Fish and Shrimp Aquacultures in Constructed Wetlands 105<br /></b><i>Yaln Tepe and Fulya Aydin Temel</i></p> <p>5.1 Introduction 105</p> <p>5.1.1 Concerns in Aquaculture 105</p> <p>5.2 Overview of Aquaculture and Effluent Treatment 107</p> <p>5.2.1 Effluent Water Quality Considerations 108</p> <p>5.3 Use of Constructed Wetlands  for Treatment of Fish and Shrimp Culture Effluents 112</p> <p>5.3.1 Free Water Surface Constructed Wetlands  (FWS CWs) 113</p> <p>5.3.2 Subsurface Flow Constructed Wetlands  (SFCWs) 114</p> <p>5.3.3 Hybrid Systems (HS) 115</p> <p>5.4 Conclusions 119</p> <p>References 120</p> <p><b>6 Evaluation of Treatment Wetlands of Different Configuration for the Sugarcane-Mill Effluent under Tropical Conditions 127<br /></b><i>E. Navarro, R. Pastor, V. Matamoros and J.M. Bayona</i></p> <p>6.1 Introduction 127</p> <p>6.2 Modeling Water Consumption Minimization 130</p> <p>6.2.1 First Approach to Linearity 131</p> <p>6.2.2 A MILP Approach to the Problem 131</p> <p>6.3 Type of Effluent and Pretreatment 133</p> <p>6.3.1 Physical–Chemical Methods 133</p> <p>6.3.2 Intensive Biological Processes 133</p> <p>6.3.2.1 Suspended Bed Reactor 133</p> <p>6.3.2.2 Fixed Bed Reactor 133</p> <p>6.3.2.3 Fluidized Bed Reactor 134</p> <p>6.3.3 Extensive Biological Processes 134</p> <p>6.4 Constructed Wetlands  (CWs) 135</p> <p>6.4.1 Case Studies 135</p> <p>6.4.1.1 India 135</p> <p>6.4.1.2 Kenya 137</p> <p>6.4.1.3 Mexico 137</p> <p>6.4.1.4 South Africa 138</p> <p>6.4.1.5 Thailand 138</p> <p>6.4.2 Effects of Design and Operation on the COD, BOD and Nutrient Removal 139</p> <p>6.4.3 Other Water Quality Parameters 140</p> <p>6.4.3.1 Turbidity 140</p> <p>6.4.3.2 Pigments 140</p> <p>6.4.3.3 Sulfate 140</p> <p>6.4.3.4 Nitrogen Removal 141</p> <p>6.4.3.5 Phosphorus 141</p> <p>6.5 Research Needs 141</p> <p>Acknowledgements 141</p> <p>References 142</p> <p><b>7 Treatment of Effluents from Meat, Vegetable and Soft Drinks Processing using Constructed Wetlands  145<br /></b><i>Marco Hartl, Joseph Hogan and Vassia Ioannidou</i></p> <p>7.1 Treatment of Slaughterhouse and Meat Processing Wastewater 145</p> <p>7.2 Treatment of Potato Washing Wastewater 150</p> <p>7.3 Treatment of Molasses Wastewater 153</p> <p>7.4 Treatment of Effluents from Coffee Processing 157</p> <p>References 160</p> <p>Part III Agro-Industrial Wastewater 163</p> <p><b>8 Olive Mill Wastewater Treatment in Constructed Wetlands  165<br /></b><i>F. Masi, A. Rizzo, R. Bresciani, D. Vayenas, C. Akratos, A. Tekerlekopoulou and A.I. Stefanakis</i></p> <p>8.1 Introduction 165</p> <p>8.2 Wastewater Production and Characterization 166</p> <p>8.3 Applications and Configurations 166</p> <p>8.3.1 The Greek Experiences 168</p> <p>8.3.1.1 FreeWater Surface CWs 168</p> <p>8.3.1.2 Horizontal Subsurface Flow CWs 170</p> <p>8.3.1.3 Vertical Flow CWs 170</p> <p>8.3.1.4 HybridWetland Systems 171</p> <p>8.4 Evaporation Plus Constructed Wetlands : An Italian Innovative Approach 172</p> <p>8.5 Discussion and Conclusions 172</p> <p>References 173</p> <p><b>9 Dairy Wastewater Treatment with Constructed Wetlands : Experiences from Belgium, the Netherlands and Greece 175<br /></b><i>Christos S. Akratos, Dion van Oirschot, Athanasia G. Tekerlekopoulou, Dimitrios V. Vayenas and Alexandros Stefanakis</i></p> <p>9.1 Introduction 175</p> <p>9.2 Brief Literature Review onWetland Systems for DairyWastewater Treatment 176</p> <p>9.3 Experiences from the Netherlands and Belgium 181</p> <p>9.3.1 Wetland System Description 182</p> <p>9.3.2 Operation 183</p> <p>9.3.3 Results from the Netherlands 184</p> <p>9.3.3.1 Experimental Projects 184</p> <p>9.3.3.2 Stimulation of Denitrification through Recirculation of Effluent 185</p> <p>9.3.3.3 Phosphorus Removal 185</p> <p>9.3.4 Results from Belgium 187</p> <p>9.3.4.1 System at Poppe, Eeklo 187</p> <p>9.3.4.2 System at De Paep, Sint-GillisWaas in Belgium 188</p> <p>9.3.4.3 System at PDLT, Geel in Belgium 189</p> <p>9.3.4.4 AeratedWetland (FBA) at PDLT, Geel in Belgium 190</p> <p>9.4 Experiences from Greece 192</p> <p>9.4.1 First Experimental Project 192</p> <p>9.4.2 Second Experimental Project 196</p> <p>9.5 Conclusions 197</p> <p>References 198</p> <p><b>10 The Performance of Constructed Wetlands  for Treating Swine Wastewater under Different Operating Conditions 203<br /></b><i>Gladys Vidal, Catalina Plaza de Los Reyes and Oliver Sáez</i></p> <p>10.1 Introduction 203</p> <p>10.1.1 The Swine Sector and the Generation of Slurries 203</p> <p>10.1.2 Characterization of Slurries 203</p> <p>10.1.3 Environmental Effects of the Application of Slurry in Soils 205</p> <p>10.1.4 Integrated Management for Treating Swine Slurry 205</p> <p>10.1.5 Primary Treatment (Solids Removal) 207</p> <p>10.1.6 Secondary Treatment (Organic Matter Removal) 207</p> <p>10.1.6.1 Anaerobic Treatment Systems 207</p> <p>10.2 Removal of Nutrients by Constructed Wetlands  207</p> <p>10.2.1 ConstructedWetland (CW) 208</p> <p>10.2.1.1 Macrophyte Species Used in Constructed Wetlands  209</p> <p>10.2.1.2 Nitrogen Elimination Mechanisms in Constructed Wetlands  209</p> <p>10.2.1.3 Incorporation into Plant Tissue (Assimilation) 212</p> <p>10.2.1.4 Ammonium Sedimentation/Adsorption 212</p> <p>10.2.1.5 Anammox (or Anaerobic Ammonia Oxidation) 213</p> <p>10.3 Removal of Nutrients by Constructed Wetlands  using Biological Pretreatments 213</p> <p>Acknowledgements 216</p> <p>References 216</p> <p><b>Part IV Mine Drainage and Leachate Treatment 223</b></p> <p><b>11 Constructed Wetlands  for Metals: Removal Mechanism and Analytical Challenges 225<br /></b><i>Adam Sochacki, Asheesh K. Yadav, Pratiksha Srivastava, Naresh Kumar, MarkWilliam Fitch and Ashirbad Mohanty</i></p> <p>11.1 Sources of Metal Pollution and Rationale for Using Constructed Wetlands  to Treat Metal-Laden Wastewater 225</p> <p>11.2 Removal Mechanisms 226</p> <p>11.2.1 Adsorption 226</p> <p>11.2.2 Filtration and Sedimentation 226</p> <p>11.2.3 Association with Metal Oxides and Hydroxides 227</p> <p>11.2.4 Precipitation as Sulfides 227</p> <p>11.2.4.1 Mechanism of the Process 228</p> <p>11.2.4.2 Bacterial Sulfate Reduction in Constructed Wetlands  230</p> <p>11.2.4.3 Carbon Source for Sulfate-Reducing Bacteria 231</p> <p>11.2.5 Microbial Removal Processes 232</p> <p>11.2.6 Plant Uptake of Metals in Constructed Wetlands  232</p> <p>11.2.6.1 Metal Uptake by Aquatic Macrophytes 232</p> <p>11.2.6.2 Metal Uptake by the Roots 233</p> <p>11.2.6.3 Metal Uptake by the Shoots 233</p> <p>11.2.6.4 Indirect Assistance in Metal Removal by Plants 233</p> <p>11.2.6.5 Role of Plants in Removing Metals from Industrial Wastewater 234</p> <p>11.2.7 Other Processes 235</p> <p>11.3 Analytical Challenges 235</p> <p>11.3.1 Background and Overview of Methods 235</p> <p>11.3.2 Sequential Extraction Procedures and their Applicability to Wetland Substrates 237</p> <p>11.3.3 State-of-the-Art Instrumental Methods 238</p> <p>11.3.4 Advanced Analytical Techniques 239</p> <p>References 241</p> <p><b>12 A Review on the Use of Constructed Wetlands  for the Treatment of Acid Mine Drainage 249<br /></b><i>C. Sheridan, A. Akcil, U. Kappelmeyer and I. Moodley</i></p> <p>12.1 What is Acid Mine Drainage? 249</p> <p>12.2 Sources of AMD 250</p> <p>12.3 Environmental and Social Impacts of AMD 251</p> <p>12.3.1 Environmental Impacts 251</p> <p>12.3.2 Social Impacts of AMD 253</p> <p>12.4 Remediation of AMD 253</p> <p>12.4.1 Constructed Wetlands  254</p> <p>12.4.1.1 ConstructedWetland Configuration Types 254</p> <p>12.4.1.2 Mechanism by which CWs Remediate Most AMD/ARD 254</p> <p>12.4.1.3 Constructed Wetlands  for Treating AMD Prior to 2000 255</p> <p>12.4.1.4 Constructed Wetlands  for Treating AMD Between 2001 and 2010 256</p> <p>12.4.1.5 Constructed Wetlands  for Treating AMD from 2010 to the Present 258</p> <p>12.5 Summary 259</p> <p>References 259</p> <p><b>13 Solid Waste (SW) Leachate Treatment using Constructed Wetland Systems 263<br /></b>K.B.S.N. Jinadasa, T.A.O.K. Meetiyagoda andWun Jern Ng</p> <p>13.1 The Nature of SolidWaste (SW) and SWLeachate 263</p> <p>13.2 Characteristics of SWLeachate in Tropical Developing Countries 265</p> <p>13.3 TreatmentMethods for SWLeachate 267</p> <p>13.3.1 Advantages of Constructed Wetlands  for Leachate Treatment Under Tropical Climate 269</p> <p>13.4 ExperimentalMethodology for Plant Species and CWPerformance Evaluation 270</p> <p>13.5 Effect of Plant Species on Leachate Components 273</p> <p>13.5.1 Effect on Organic Compounds 273</p> <p>13.5.2 Effect on Removal and Transformation of Nitrogen Compounds 276</p> <p>13.6 Summary 279</p> <p>References 279</p> <p><b>Part V Wood and Leather Processing 283</b></p> <p><b>14 Cork Boiling Wastewater Treatment in Pilot Constructed Wetlands  285<br /></b><i>Arlindo C. Gomes, Alexandros Stefanakis, António Albuquerque and Rogério Simões</i></p> <p>14.1 Introduction 285</p> <p>14.1.1 Cork Production and Manufacture 285</p> <p>14.1.2 Cork Boiling Wastewater Characteristics 286</p> <p>14.2 Cork Boiling Wastewater Treatment 289</p> <p>14.2.1 Physico-Chemical Treatment 289</p> <p>14.2.2 Biological Treatment 298</p> <p>14.2.3 Sequential Treatment 299</p> <p>14.3 Constructed Wetland Technology 300</p> <p>14.3.1 Experimental Setup of Microcosm-Scale Constructed Wetlands 301</p> <p>14.3.2 Experimental Results 302</p> <p>14.4 Conclusions 304</p> <p>Acknowledgements 305</p> <p>References 305</p> <p><b>15 Constructed Wetland Technology for Pulp and Paper Mill Wastewater Treatment 309<br /></b><i>Satish Kumar and Ashutosh Kumar Choudhary</i></p> <p>15.1 Introduction 309</p> <p>15.2 Pulp and Paper Mill Wastewater Characteristics 310</p> <p>15.3 Remediation of Pulp and Paper Mill Wastewater Pollution 311</p> <p>15.4 Constructed Wetlands  312</p> <p>15.4.1 Performance of CWs for Pulp and Paper Mill Wastewater Treatment 312</p> <p>15.5 Conclusions 322</p> <p>References 322</p> <p><b>16 Treatment of Wastewater from Tanneries and the Textile Industry using Constructed Wetland Systems 327<br /></b><i>Christos S. Akratos, Athanasia G. Tekerlekopoulou and Dimitrios V. Vayenas</i></p> <p>16.1 Introduction 327</p> <p>16.1.1 Tannery Wastewaters 327</p> <p>16.1.2 Azo Dye and Textile Industries 330</p> <p>16.2 Discussion 332</p> <p>16.3 Constructed Wetlands  for Cr(VI) Removal: A Case Study 332</p> <p>16.4 Conclusions 337</p> <p>References 338</p> <p>Part IV Pharmaceuticals and Cosmetics Industry 343</p> <p><b>17 Removal Processes of Pharmaceuticals in Constructed Wetlands  345<br /></b><i>A. Dordio and A.J.P. Carvalho</i></p> <p>17.1 Introduction 345</p> <p>17.2 Pharmaceutical Compounds in the Environment: Sources, Fate and Environmental Effects 348</p> <p>17.3 Pharmaceuticals Removal in Constructed Wetlands  352</p> <p>17.3.1 Removal Efficiency of Pharmaceuticals in CWS 352</p> <p>17.3.2 Main Removal Processes for Pharmaceuticals in SSF-CWS 365</p> <p>17.3.2.1 Abiotic Processes 365</p> <p>17.3.2.2 Biotic Processes 367</p> <p>17.3.3 The Role of SSF-CWS Components in Pharmaceutical Removal 370</p> <p>17.3.3.1 The Role of Biotic Components (Plants and Microorganisms) in Pharmaceuticals Removal 370</p> <p>17.3.3.2 The Role of the Support Matrix in Pharmaceuticals Removal 381</p> <p>17.4 Final Remarks 385</p> <p>References 386</p> <p><b>18 Role of Bacterial Diversity on PPCPs Removal in Constructed Wetlands  405<br /></b><i>María Hijosa-Valsero, Ricardo Sidrach-Cardona, Anna Pedescoll, Olga Sánchez and Eloy Bécares</i></p> <p>18.1 Introduction 405</p> <p>18.2 Mesocosm-Scale Experiences 406</p> <p>18.2.1 Description of the Systems 406</p> <p>18.2.2 Sampling Strategy 406</p> <p>18.2.3 Analytical Methodology 408</p> <p>18.3 Pollutant Concentrations and Removal Efficiencies in Mesocosms CWs 409</p> <p>18.4 Microbiological Characterization 409</p> <p>18.5 Link between Microbiological Richness and Pollutant Removal in CWs 413</p> <p>18.5.1 Microbial Richness and Conventional Pollutant Removal 413</p> <p>18.5.1.1 Roots 413</p> <p>18.5.2 Microbial Richness and PPCP Removal 414</p> <p>18.5.2.1 Gravel 414</p> <p>18.5.2.2 Interstitial Liquid 414</p> <p>18.5.2.3 Roots 414</p> <p>18.5.3 Effect of Physico-Chemical Parameters on Microbial Richness 416</p> <p>18.5.3.1 Gravel 416</p> <p>18.5.3.2 Interstitial Liquid 416</p> <p>18.5.3.3 Roots 416</p> <p>18.6 Mechanisms and Design Parameters Involved in PPCPs Removal 418</p> <p>18.7 Conclusions 420</p> <p>Acknowledgements 421</p> <p>References 421</p> <p><b>Part VII Novel Industrial Applications 427</b></p> <p><b>19 Dewatering of Industrial Sludge in Sludge Treatment Reed Bed Systems 429<br /></b><i>S. Nielsen and E. Bruun</i></p> <p>19.1 Introduction 429</p> <p>19.2 Methodology 431</p> <p>19.2.1 Description of an STRB 431</p> <p>19.2.2 Description of STRB Test-System 432</p> <p>19.3 Treatment of Industrial Sludge in STRB Systems 434</p> <p>19.3.1 Organic Material in Sludge 434</p> <p>19.3.2 Fats and Oil in Sludge 434</p> <p>19.3.3 Heavy Metals in Sludge 435</p> <p>19.3.4 Nutrients in Sludge 436</p> <p>19.3.5 Hazardous Organic Compounds in Sludge 436</p> <p>19.4 Case Studies – Treatment of Industrial Sludge in Full-Scale and Test STRB Systems 437</p> <p>19.4.1 Case 1: Treatment of Industrial Sewage Sludge with High Contents of Fat 437</p> <p>19.4.2 Case 2: Treatment of Industrial Sewage Sludge with High Contents of Heavy Metal (Nickel) 438</p> <p>19.4.3 Case 3: Treatment of Water Works Sludge 440</p> <p>19.4.3.1 Feed Sludge and Resulting Filtrate Quality 442</p> <p>19.4.3.2 Sedimentation and Capillary Suction Time 443</p> <p>19.4.3.3 Sludge Volume Reduction and Sludge Residue Development 446</p> <p>19.4.3.4 Filtrate Water Flow 447</p> <p>19.5 Discussion and Conclusions 448</p> <p>19.5.1 Industrial Sludge 448</p> <p>19.5.2 Water Works Sludge 449</p> <p>Acknowledgements 450</p> <p>References 450</p> <p><b>20 Constructed Wetlands  for Water Quality Improvement and Temperature Reduction at a Power-Generating Facility</b> <b>453<br /></b><i>Christopher H. Keller, Susan Flash and John Hanlon</i></p> <p>20.1 Introduction 453</p> <p>20.2 Basis of Design 453</p> <p>20.2.1 Design for Ammonia and Copper Reduction 454</p> <p>20.2.2 Design for pH, Toxicity, and Specific Conductance 456</p> <p>20.2.3 Design for Temperature Reduction 456</p> <p>20.2.4 Process Flow and Final Design Criteria 458</p> <p>20.3 Construction 458</p> <p>20.4 Operational Performance Summary 459</p> <p>20.4.1 Inflow and Outflow Rates and Wetland Water Depths 459</p> <p>20.4.2 Ammonia 463</p> <p>20.4.3 Copper 463</p> <p>20.4.4 pH 463</p> <p>20.4.5 Temperature 464</p> <p>20.4.6 Whole Effluent Toxicity 466</p> <p>20.4.7 Specific Conductance 466</p> <p>20.5 Discussion 466</p> <p>References 468</p> <p><b>21 Recycling of Carwash Effluents Treated with Subsurface Constructed Wetlands 469<br /></b><i>A. Torrens, M. Folch, M. Salgot and M. Aulinas</i></p> <p>21.1 Introduction 469</p> <p>21.2 Case Study: Description 471</p> <p>21.2.1 Pilot Vertical Flow Constructed Wetland 471</p> <p>21.2.2 Pilot Horizontal Flow Constructed Wetland 471</p> <p>21.2.3 Operation and Monitoring 472</p> <p>21.3 Case Study: Results and Discussion 474</p> <p>21.3.1 Influent Characterization 474</p> <p>21.3.2 Effluent Quality for Recycling 477</p> <p>21.3.3 Performance of the Constructed Wetland Pilots 478</p> <p>21.3.3.1 Horizontal Flow Constructed Wetland 478</p> <p>21.3.3.2 Vertical Flow Constructed Wetland 482</p> <p>21.3.3.3 Comparison of Performances 486</p> <p>21.4 Design and Operation Recommendations 488</p> <p>21.4.1 Horizontal Flow Constructed Wetland 488</p> <p>21.4.2 Vertical Flow Constructed Wetland 489</p> <p>21.5 Conclusions 489</p> <p>References 490</p> <p><b>22 Constructed Wetland-Microbial Fuel Cell: An Emerging Integrated Technology for Potential Industrial Wastewater</b> <b>Treatment and Bio-Electricity Generation 493<br /></b><i>Asheesh Kumar Yadav, Pratiksha Srivastava, Naresh Kumar, Rouzbeh Abbassi and Barada Kanta Mishra</i></p> <p>22.1 Introduction 493</p> <p>22.2 The Fundamentals of MFC and Microbial Electron Transfer to Electrode 495</p> <p>22.3 State of the Art of CW-MFCs 496</p> <p>22.3.1 Design and Operation of CW-MFCs 496</p> <p>22.3.2 Performance Evaluation of the Various CW-MFCs 497</p> <p>22.4 Potential IndustrialWastewater Treatment in CW-MFCs 500</p> <p>22.5 Challenges in Generating Bio-Electricity in CW-MFCs During IndustrialWastewater Treatment 502</p> <p>22.6 Future Directions 503</p> <p>Acknowledgements 504</p> <p>References 504</p> <p><b>23 Constructed Wetlands  for Storm water Treatment from Specific (Dutch) Industrial Surfaces 511<br /></b><i>Floris Boogaard, Johan Blom and Joost van den Bulk</i></p> <p>23.1 Introduction 511</p> <p>23.2 Storm water Characteristics 511</p> <p>23.2.1 Storm water Quality in Urban Areas 511</p> <p>23.2.2 Industrial Storm water Quality 513</p> <p>23.2.3 Fraction of Pollutants Attached to Particles 513</p> <p>23.2.3.1 Particle Size Distribution 515</p> <p>23.2.4 Removal Efficiency 515</p> <p>23.3 Best Management Practices of (Dutch)Wetlands at Industrial Sites 515</p> <p>23.3.1 Amsterdam Westergasfabriekterrein 518</p> <p>23.3.2 Constructed Wetland Oostzaan: Multifunctional High Removal Efficiency 518</p> <p>23.3.3 Constructed Wetland Hoogeveen, Oude Diep 520</p> <p>23.3.4 Cost 520</p> <p>23.3.5 Choosing Best Location(s) of Wetlands on Industrial Areas 520</p> <p>23.4 Innovation in Monitoring Wetlands 522</p> <p>23.4.1 Innovative Determination of Long-Term Hydraulic Capacity of Wetlands 523</p> <p>23.4.2 Innovating Monitoring of Removal Efficiency and Eco-Scan 524</p> <p>23.5 Conclusions and Recommendations 525</p> <p>23.5.1 Conclusions 525</p> <p>23.5.2 Recommendations 527</p> <p>References 527</p> <p><b>Part VIII Managerial Aspects 529</b></p> <p><b>24 A Novel Response of Industry to Wastewater Treatment with Constructed Wetlands: A Managerial View through</b> <b>System Dynamic Techniques 531<br /></b><i>Ioannis E. Nikolaou and Alexandros I. Stefanakis</i></p> <p>24.1 Introduction 531</p> <p>24.2 Theoretical Underpinning 532</p> <p>24.2.1 Constructed Wetlands  – A Short Review 532</p> <p>24.2.2 Constructed Wetlands : An Economic–Environmental Approach 533</p> <p>24.2.3 Constructed Wetlands : An Industrial Viewpoint 534</p> <p>24.2.4 CWs Through a CSR Glance 534</p> <p>24.3 Methodology 536</p> <p>24.3.1 Research Structure 536</p> <p>24.3.2 The CSR-CWs Agenda 537</p> <p>24.3.3 CSR-CWs Balanced Scorecard 537</p> <p>24.3.4 CSR-CWs Balanced Scorecard System Dynamic Model 539</p> <p>24.3.5 Some Certain Scenario Developments 540</p> <p>24.4 Test of Scenarios and a Typology Construction for Decision Making 541</p> <p>24.4.1 Scenario Analysis 541</p> <p>24.4.1.1 The Proactive Industry –The Business Case Approach 541</p> <p>24.4.1.2 Proactive Industry –The Ethical Case Approach 541</p> <p>24.4.1.3 Reactive Industry – The Business Case Approach 543</p> <p>24.4.1.4 Reactive Industry – The Ethical Case Approach 543</p> <p>24.4.2 A Typology of Industry Decision Making in CSR-CWs Agenda 544</p> <p>24.5 Conclusion and Discussion 545</p> <p>References 546</p> <p><b>25 A Construction Manager’s Perception of a Successful Constructed Wetland Project 551<br /></b><i>Emmanuel Aboagye-Nimo, Justus Harding and Alexandros I. Stefanakis</i></p> <p>25.1 Key Performance Indicators for Construction Projects 551</p> <p>25.2 Function and Values of Constructed Wetlands  552</p> <p>25.2.1 Constructed Wetland Components 553</p> <p>25.3 Clear Deliverables of Project 554</p> <p>25.3.1 Health and Safety Considerations in Construction Projects 555</p> <p>25.3.2 Hazard Identification and Risk Screening 556</p> <p>25.3.3 Securing the Project 556</p> <p>25.4 Critical Points in Constructing Wetlands 556</p> <p>25.5 Summary 559</p> <p>References 560</p> <p>Index 563</p>
<p><b>Alexandros I. Stefanakis,</b> Bauer Resources, Schrobenhausen, Germany; Bauer Nimr LLC, Muscat, Oman; and German University of Technology in Oman, Muscat, Oman.
<p><b>A groundbreaking book on the application of the economic and environmentally effective treatment of industrial wastewater</b> <p><i>Constructed Wetlands for Industrial Wastewater Treatment</i> contains a review of the state-of-the-art applications of constructed wetland technology for industrial wastewater treatment. This green technology offers many economic, environmental, and societal advantages. The text examines the many unique uses and the effectiveness of constructed wetlands for the treatment of complex and heavily polluted wastewater from various industrial sources. <p>The editor—a noted expert in the field—and the international author team (93 authors from 22 countries) present vivid examples of the current state of constructed wetlands in the industrial sector. The text is filled with international case studies and research outcomes and covers a wide range of applications of these sustainable systems including facilities such as the oil and gas industry, agro-industries, paper mills, pharmaceutical industry, textile industry, winery, brewery, sludge treatment and much more. The book reviews the many system setups, examines the different removal and/or transformational processes of the various pollutants and explores the overall effectiveness of this burgeoning technology. This important resource: <ul> <li>Offers the first, groundbreaking text on constructed wetlands use for industrial wastewater treatment</li> <li>Provides a single reference with summarized information and the state-of-the-art knowledge of the use of Constructed Wetlands in the industrial sector through case studies, research outcomes and review chapters</li> <li>Covers a range of industrial applications such as hydrocarbons/oil and gas industry, food and beverage, wood and leather processing, agro-industries, pharmaceuticals and many others</li> <li>Includes best practices drawn by a collection of international case studies</li> <li>Presents the latest technological developments in the industry</li> </ul> <p>Written for<b></b> civil and environmental engineers, sustainable wastewater/water managers in industry and government, <i>Constructed Wetlands for Industrial Wastewater Treatment</i> is the first book to offer a comprehensive review of the set-up and effectiveness of constructed wetlands for a wide range of industrial applications to highlight the diverse economic and environmental benefits this technology brings to the industry.

Diese Produkte könnten Sie auch interessieren:

The Vicuña
The Vicuña
von: Iain Gordon, Jane C. Wheeler, Hugo Yacobaccio, Jerry Laker, Marcelo Cassini, Mariela Borgnia, Yanina Arzamendia, Verónica Benítez, Bibiana Vilá, Cristian Bonacic, Jessica Gimpel, Pete Goddard, Desmond McNeill, Gabriela Lichtenstein, Renaudeau d' Arc Nadine, Kristi Anne Stølen, Javier García Gomez, Ana Wawrzyk
PDF ebook
96,29 €
Saving Biological Diversity
Saving Biological Diversity
von: Robert A. Askins, Glenn D. Dreyer, Gerald R. Visgilio, Diana M. Whitelaw
PDF ebook
96,29 €
Martens and Fishers (Martes) in Human-Altered Environments
Martens and Fishers (Martes) in Human-Altered Environments
von: Daniel J. Harrison, Angela K. Fuller, Gilbert Proulx
PDF ebook
149,79 €