Details

Medicinal Chemistry


Medicinal Chemistry

An Introduction
2. Aufl.

von: Gareth Thomas

39,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 13.10.2008
ISBN/EAN: 9780470518304
Sprache: englisch
Anzahl Seiten: 656

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>Medicinal Chemistry: An Introduction, Second Edition</i> provides a comprehensive, balanced introduction to this evolving and multidisciplinary area of research. Building on the success of the First Edition, this edition has been completely revised and updated to include the latest developments in the field. <p>Written in an accessible style, <i>Medicinal Chemistry: An Introduction, Second Edition</i> carefully explains fundamental principles, assuming little in the way of prior knowledge. The book focuses on the chemical principles used for drug discovery and design covering physiology and biology where relevant. It opens with a broad overview of the subject with subsequent chapters examining topics in greater depth.</p> <p>From the reviews of the First Edition:</p> <p><i>"It contains a wealth of information in a compact form"</i> ANGEWANDTE CHEMIE, INTERNATIONAL EDITION</p> <p>"Medicinal Chemistry <i>is certainly a text I would chose to teach from for undergraduates. It fills a unique niche in the market place."</i> PHYSICAL SCIENCES AND EDUCATIONAL REVIEWS</p>
<p>Preface to the First Edition xv</p> <p>Preface to the Second Edition xvii</p> <p>Acknowledgements xix</p> <p>Abbreviations xxi</p> <p><b>1 An introduction to drugs, their action and discovery 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 What are drugs and why do we need new ones? 1</p> <p>1.3 Drug discovery and design: a historical outline 3</p> <p>1.3.1 The general stages in modern-day drug discovery and design 7</p> <p>1.4 Leads and analogues: some desirable properties 9</p> <p>1.4.1 Bioavailability 9</p> <p>1.4.2 Solubility 10</p> <p>1.4.3 Structure 10</p> <p>1.4.4 Stability 11</p> <p>1.5 Sources of leads and drugs 14</p> <p>1.5.1 Ethnopharmaceutical sources 15</p> <p>1.5.2 Plant sources 15</p> <p>1.5.3 Marine sources 17</p> <p>1.5.4 Microorganisms 18</p> <p>1.5.5 Animal sources 20</p> <p>1.5.6 Compound collections, data bases and synthesis 20</p> <p>1.5.7 The pathology of the diseased state 21</p> <p>1.5.8 Market forces and ‘me-too drugs’ 21</p> <p>1.6 Methods and routes of administration: the pharmaceutical phase 21</p> <p>1.7 Introduction to drug action 24</p> <p>1.7.1 The pharmacokinetic phase (ADME) 25</p> <p>1.7.2 The pharmacodynamic phase 32</p> <p>1.8 Classification of drugs 33</p> <p>1.8.1 Chemical structure 33</p> <p>1.8.2 Pharmacological action 34</p> <p>1.8.3 Physiological classification 34</p> <p>1.8.4 Prodrugs 35</p> <p>1.9 Questions 35</p> <p><b>2 Drug structure and solubility 37</b></p> <p>2.1 Introduction 37</p> <p>2.2 Structure37</p> <p>2.3 Stereochemistry and drug design 38</p> <p>2.3.1 Structurally rigid groups 38</p> <p>2.3.2 Conformation 39</p> <p>2.3.3 Configuration 41</p> <p>2.4 Solubility 44</p> <p>2.4.1 Solubility and the physical nature of the solute 44</p> <p>2.5 Solutions 46</p> <p>2.6 The importance of water solubility 47</p> <p>2.7 Solubility and the structure of the solute 49</p> <p>2.8 Salt formation 50</p> <p>2.9 The incorporation of water solubilising groups in a structure 52</p> <p>2.9.1 The type of group 52</p> <p>2.9.2 Reversible and irreversible groups 53</p> <p>2.9.3 The position of the water solubilising group 53</p> <p>2.9.4 Methods of introduction 54</p> <p>2.9.5 Improving lipid solubility 59</p> <p>2.10 Formulation methods of improving water solubility 59</p> <p>2.10.1 Cosolvents 59</p> <p>2.10.2 Colloidal solutions 59</p> <p>2.10.3 Emulsions 60</p> <p>2.11 The effect of pH on the solubility of acidic and basic drugs 61</p> <p>2.12 Partition 63</p> <p>2.12.1 Practical determination of partition coefficients 65</p> <p>2.12.2 Theoretical determination of partition coefficients 66</p> <p>2.13 Surfactants and amphiphiles 66</p> <p>2.13.1 Drug solubilisation 69</p> <p>2.13.2 Mixed micelles as drug delivery systems 71</p> <p>2.13.3 Vesicles and liposomes 72</p> <p>2.14 Questions 72</p> <p><b>3 Structure–activity and quantitative structure relationships 75</b></p> <p>3.1 Introduction 75</p> <p>3.2 Structure–activity relationship (SAR) 76</p> <p>3.3 Changing size and shape 77</p> <p>3.3.1 Changing the number of methylene groups in chains and rings 77</p> <p>3.3.2 Changing the degree of unsaturation 78</p> <p>3.3.3 Introduction or removal of a ring system 78</p> <p>3.4 Introduction of new substituents 80</p> <p>3.4.1 Methyl groups 81</p> <p>3.4.2 Halogen groups 83</p> <p>3.4.3 Hydroxy groups 84</p> <p>3.4.4 Basic groups 84</p> <p>3.4.5 Carboxylic and sulphonic acid groups 85</p> <p>3.4.6 Thiols, sulphides and other sulphur groups 85</p> <p>3.5 Changing the existing substituents of a lead 86</p> <p>3.6 Case study: a SAR investigation to discover potent geminal bisphosphonates 87</p> <p>3.7 Quantitative structure–activity relationship (QSAR) 90</p> <p>3.7.1 Regression analysis 93</p> <p>3.7.2 The lipophilic parameters 94</p> <p>3.7.3 Electronic parameters 99</p> <p>3.7.4 Steric parameters 102</p> <p>3.8 Questions 110</p> <p><b>4 Computer-aided drug design 113</b></p> <p>4.1 Introduction 113</p> <p>4.1.1 Models 114</p> <p>4.1.2 Molecular modelling methods 115</p> <p>4.1.3 Computer graphics 116</p> <p>4.2 Molecular mechanics 117</p> <p>4.2.1 Creating a molecular model using molecular mechanics 120</p> <p>4.3 Molecular dynamics 123</p> <p>4.3.1 Conformational analysis 124</p> <p>4.4 Quantum mechanics 124</p> <p>4.5 Docking 127</p> <p>4.5.1 De novo design 128</p> <p>4.6 Comparing three-dimensional structures by the use of overlays 130</p> <p>4.6.1 An example of the use of overlays 132</p> <p>4.7 Pharmacophores and some of their uses 133</p> <p>4.7.1 High-resolution X-ray crystallography or NMR 133</p> <p>4.7.2 Analysis of the structures of different ligands 134</p> <p>4.8 Modelling protein structures 135</p> <p>4.9 Three-dimensional QSAR 136</p> <p>4.9.1 Advantages and disadvantages 140</p> <p>4.10 Other uses of computers in drug discovery 141</p> <p>4.11 Questions 143</p> <p><b>5 Combinatorial chemistry 145</b></p> <p>5.1 Introduction 145</p> <p>5.1.1 The design of combinatorial syntheses 147</p> <p>5.1.2 The general techniques used in combinatorial synthesis 148</p> <p>5.2 The solid support method 148</p> <p>5.2.1 General methods in solid support combinatorial chemistry 150</p> <p>5.2.2 Parallel synthesis 152</p> <p>5.2.3 Furka’s mix and split technique 155</p> <p>5.3 Encoding methods 157</p> <p>5.3.1 Sequential chemical tagging 157</p> <p>5.3.2 Still’s binary code tag system 160</p> <p>5.3.3 Computerised tagging 161</p> <p>5.4 Combinatorial synthesis in solution 161</p> <p>5.4.1 Parallel synthesis in solution 162</p> <p>5.4.2 The formation of libraries of mixtures 163</p> <p>5.4.3 Libraries formed using monomethyl polyethylene glycol (OMe-PEG) 164</p> <p>5.4.4 Libraries produced using dendrimers as soluble supports 164</p> <p>5.4.5 Libraries formed using fluorocarbon reagents 165</p> <p>5.4.6 Libraries produced using resin-bound scavenging agents 166</p> <p>5.4.7 Libraries produced using resin-bound reagents 168</p> <p>5.4.8 Resin capture of products 168</p> <p>5.5 Deconvolution 169</p> <p>5.6 High-throughput screening (HTS) 170</p> <p>5.6.1 Biochemical assays 171</p> <p>5.6.2 Whole cell assays 173</p> <p>5.6.3 Hits and hit rates 173</p> <p>5.7 Automatic methods of library generation and analysis 174</p> <p>5.8 Questions 175</p> <p><b>6 Drugs from natural sources 177</b></p> <p>6.1 Introduction 177</p> <p>6.2 Bioassays 179</p> <p>6.2.1 Screening tests 180</p> <p>6.2.2 Monitoring tests 183</p> <p>6.3 Dereplication 185</p> <p>6.4 Structural analysis of the isolated substance 186</p> <p>6.5 Active compound development 188</p> <p>6.6 Extraction procedures 189</p> <p>6.6.1 General considerations 190</p> <p>6.6.2 Commonly used methods of extraction 191</p> <p>6.6.3 Cleaning up procedures 195</p> <p>6.7 Fractionation methods 195</p> <p>6.7.1 Liquid–liquid partition 196</p> <p>6.7.2 Chromatographic methods 199</p> <p>6.7.3 Precipitation 200</p> <p>6.7.4 Distillation 200</p> <p>6.7.5 Dialysis 202</p> <p>6.7.6 Electrophoresis 202</p> <p>6.8 Case history: the story of Taxol 202</p> <p>6.9 Questions 206</p> <p><b>7 Biological membranes 207</b></p> <p>7.1 Introduction 207</p> <p>7.2 The plasma membrane 208</p> <p>7.2.1 Lipid components 209</p> <p>7.2.2 Protein components 211</p> <p>7.2.3 The carbohydrate component 213</p> <p>7.2.4 Similarities and differences between plasma membranes in different cells 213</p> <p>7.2.5 Cell walls 214</p> <p>7.2.6 Bacterial cell exterior surfaces 217</p> <p>7.2.7 Animal cell exterior surfaces 218</p> <p>7.2.8 Virus 218</p> <p>7.2.9 Tissue 219</p> <p>7.2.10 Human skin 219</p> <p>7.3 The transfer of species through cell membranes 220</p> <p>7.3.1 Osmosis 220</p> <p>7.3.2 Filtration 221</p> <p>7.3.3 Passive diffusion 221</p> <p>7.3.4 Facilitated diffusion 223</p> <p>7.3.5 Active transport 223</p> <p>7.3.6 Endocytosis 224</p> <p>7.3.7 Exocytosis 225</p> <p>7.4 Drug action that affects the structure of cell membranes and walls 225</p> <p>7.4.1 Antifungal agents 226</p> <p>7.4.2 Antibacterial agents (antibiotics) 230</p> <p>7.4.3 Local anaesthetics 244</p> <p>7.5 Questions 249</p> <p><b>8 Receptors and messengers 251</b></p> <p>8.1 Introduction 251</p> <p>8.2 The chemical nature of the binding of ligands to receptors 252</p> <p>8.3 Structure and classification of receptors 254</p> <p>8.4 General mode of operation 256</p> <p>8.4.1 Superfamily Type 1 259</p> <p>8.4.2 Superfamily Type 2 260</p> <p>8.4.3 Superfamily Type 3 263</p> <p>8.4.4 Superfamily Type 4 264</p> <p>8.5 Ligand–response relationships 265</p> <p>8.5.1 Experimental determination of ligand concentration–response curves 266</p> <p>8.5.2 Agonist concentration–response relationships 267</p> <p>8.5.3 Antagonist concentration–receptor relationships 268</p> <p>8.5.4 Partial agonists 271</p> <p>8.5.5 Desensitisation 272</p> <p>8.6 Ligand–receptor theories 272</p> <p>8.6.1 Clark’s occupancy theory 272</p> <p>8.6.2 The rate theory 277</p> <p>8.6.3 The two-state model 278</p> <p>8.7 Drug action and design 279</p> <p>8.7.1 Agonists 279</p> <p>8.7.2 Antagonists 281</p> <p>8.7.3 Citalopram, an antagonist antidepressant discovered by a rational approach 282</p> <p>8.7.4 b-Blockers 285</p> <p>8.8 Questions 289</p> <p><b>9 Enzymes 291</b></p> <p>9.1 Introduction 291</p> <p>9.2 Classification and nomenclature 293</p> <p>9.3 Active sites and catalytic action 295</p> <p>9.3.1 Allosteric activation 297</p> <p>9.4 Regulation of enzyme activity 298</p> <p>9.4.1 Covalent modification 298</p> <p>9.4.2 Allosteric control 298</p> <p>9.4.3 Proenzyme control 300</p> <p>9.5 The specific nature of enzyme action 300</p> <p>9.6 The mechanisms of enzyme action 302</p> <p>9.7 The general physical factors affecting enzyme action 302</p> <p>9.8 Enzyme kinetics 303</p> <p>9.8.1 Single substrate reactions 303</p> <p>9.8.2 Multiple substrate reactions 305</p> <p>9.9 Enzyme inhibitors 306</p> <p>9.9.1 Reversible inhibitors 307</p> <p>9.9.2 Irreversible inhibition 312</p> <p>9.10 Transition state inhibitors 318</p> <p>9.11 Enzymes and drug design: some general considerations 320</p> <p>9.12 Examples of drugs used as enzyme inhibitors 321</p> <p>9.12.1 Sulphonamides 321</p> <p>9.12.2 Captopril and related drugs 323</p> <p>9.12.3 Statins 326</p> <p>9.13 Enzymes and drug resistance 329</p> <p>9.13.1 Changes in enzyme concentration 330</p> <p>9.13.2 An increase in the production of the substrate 331</p> <p>9.13.3 Changes in the structure of the enzyme 331</p> <p>9.13.4 The use of an alternative metabolic pathway 332</p> <p>9.14 Ribozymes 332</p> <p>9.15 Questions 332</p> <p><b>10 Nucleic acids 335</b></p> <p>10.1 Introduction 335</p> <p>10.2 Deoxyribonucleic acid (DNA) 336</p> <p>10.2.1 Structure 337</p> <p>10.3 The general functions of DNA 338</p> <p>10.4 Genes 339</p> <p>10.5 Replication 340</p> <p>10.6 Ribonucleic acid (RNA) 341</p> <p>10.7 Messenger RNA (mRNA) 342</p> <p>10.8 Transfer RNA (tRNA) 343</p> <p>10.9 Ribosomal RNA (rRNA) 345</p> <p>10.10 Protein synthesis 345</p> <p>10.10.1 Activation 345</p> <p>10.10.2 Initiation 346</p> <p>10.10.3 Elongation 347</p> <p>10.10.4 Termination 348</p> <p>10.11 Protein synthesis in prokaryotic and eukaryotic cells 348</p> <p>10.11.1 Prokaryotic cells 348</p> <p>10.11.2 Eukaryotic cells 350</p> <p>10.12 Bacterial protein synthesis inhibitors (antimicrobials) 350</p> <p>10.12.1 Aminoglycosides 351</p> <p>10.12.2 Chloramphenicol 355</p> <p>10.12.3 Tetracyclines 356</p> <p>10.12.4 Macrolides 359</p> <p>10.12.5 Lincomycins 360</p> <p>10.13 Drugs that target nucleic acids 362</p> <p>10.13.1 Antimetabolites 362</p> <p>10.13.2 Enzyme inhibitors 368</p> <p>10.13.3 Intercalating agents 372</p> <p>10.13.4 Alkylating agents 374</p> <p>10.13.5 Antisense drugs 377</p> <p>10.13.6 Chain cleaving agents 379</p> <p>10.14 Viruses 380</p> <p>10.14.1 Structure and replication 380</p> <p>10.14.2 Classification 381</p> <p>10.14.3 Viral diseases 383</p> <p>10.14.4 Antiviral drugs 384</p> <p>10.15 Recombinant DNA technology (genetic engineering) 389</p> <p>10.15.1 Gene cloning 389</p> <p>10.15.2 Medical applications 392</p> <p>10.16 Questions 401</p> <p><b>11 Pharmacokinetics 403</b></p> <p>11.1 Introduction 403</p> <p>11.1.1 General classification of pharmacokinetic properties 405</p> <p>11.1.2 Drug regimens 405</p> <p>11.1.3 The importance of pharmacokinetics in drug discovery 406</p> <p>11.2 Drug concentration analysis and its therapeutic significance 407</p> <p>11.3 Pharmacokinetic models 409</p> <p>11.4 Intravascular administration 411</p> <p>11.4.1 Distribution 412</p> <p>11.5 Extravascular administration 425</p> <p>11.5.1 Dissolution 428</p> <p>11.5.2 Absorption 429</p> <p>11.5.3 Single oral dose 430</p> <p>11.5.4 The calculation of tmax and Cmax 433</p> <p>11.5.5 Repeated oral doses 434</p> <p>11.6 The use of pharmacokinetics in drug design 435</p> <p>11.7 Extrapolation of animal experiments to humans 435</p> <p>11.8 Questions 436</p> <p><b>12 Drug metabolism 439</b></p> <p>12.1 Introduction 439</p> <p>12.1.1 The stereochemistry of drug metabolism 439</p> <p>12.1.2 Biological factors affecting metabolism 440</p> <p>12.1.3 Environmental factors affecting metabolism 443</p> <p>12.1.4 Species and metabolism 443</p> <p>12.1.5 Enzymes and metabolism 443</p> <p>12.2 Secondary pharmacological implications of metabolism 443</p> <p>12.2.1 Inactive metabolites 444</p> <p>12.2.2 Metabolites with a similar activity to the drug 444</p> <p>12.2.3 Metabolites with a dissimilar activity to the drug 444</p> <p>12.2.4 Toxic metabolites 445</p> <p>12.3 Sites of action 445</p> <p>12.4 Phase I metabolic reactions 446</p> <p>12.4.1 Oxidation 446</p> <p>12.4.2 Reduction 448</p> <p>12.4.3 Hydrolysis 448</p> <p>12.4.4 Hydration 449</p> <p>12.4.5 Other Phase I reactions 449</p> <p>12.5 Examples of Phase I metabolic reactions 449</p> <p>12.6 Phase II metabolic routes 454</p> <p>12.7 Pharmacokinetics of metabolites 457</p> <p>12.8 Drug metabolism and drug design 458</p> <p>12.9 Prodrugs 460</p> <p>12.9.1 Bioprecursor prodrugs 461</p> <p>12.9.2 Carrier prodrugs 462</p> <p>12.9.3 Photoactivated prodrugs 464</p> <p>12.9.4 The design of carrier prodrug systems for specific purposes 465</p> <p>12.10 Questions 475</p> <p><b>13 Complexes and chelating agents 477</b></p> <p>13.1 Introduction 477</p> <p>13.2 The shapes and structures of complexes 478</p> <p>13.2.1 Ligands 479</p> <p>13.2.2 Bridging ligands 483</p> <p>13.2.3 Metal–metal bonds 483</p> <p>13.2.4 Metal clusters 483</p> <p>13.3 Metal–ligand affinities 485</p> <p>13.3.1 Affinity and equilibrium constants 485</p> <p>13.3.2 Hard and soft acids and bases 487</p> <p>13.3.3 The general medical significance of complex stability 488</p> <p>13.4 The general roles of metal complexes in biological processes 488</p> <p>13.5 Therapeutic uses 491</p> <p>13.5.1 Metal poisoning 491</p> <p>13.5.2 Anticancer agents 494</p> <p>13.5.3 Antiarthritics 497</p> <p>13.5.4 Antimicrobial complexes 498</p> <p>13.5.5 Photoactivated metal complexes 499</p> <p>13.6 Drug action and metal chelation 501</p> <p>13.7 Questions 501</p> <p><b>14 Nitric oxide 503</b></p> <p>14.1 Introduction 503</p> <p>14.2 The structure of nitric oxide 503</p> <p>14.3 The chemical properties of nitric oxide 504</p> <p>14.3.1 Oxidation 505</p> <p>14.3.2 Salt formation 506</p> <p>14.3.3 Reaction as an electrophile 507</p> <p>14.3.4 Reaction as an oxidising agent 507</p> <p>14.3.5 Complex formation 508</p> <p>14.3.6 Nitric oxide complexes with iron 508</p> <p>14.3.7 The chemical properties of nitric oxide complexes 510</p> <p>14.3.8 The chemistry of related compounds 512</p> <p>14.4 The cellular production and role of nitric oxide 514</p> <p>14.4.1 General mode of action 516</p> <p>14.4.2 Suitability of nitric oxide as a chemical messenger 518</p> <p>14.4.3 Metabolism 518</p> <p>14.5 The role of nitric oxide in physiological and pathophysiological states 519</p> <p>14.5.1 The role of nitric oxide in the cardiovascular system 519</p> <p>14.5.2 The role of nitric oxide in the nervous system 520</p> <p>14.5.3 Nitric oxide and diabetes 522</p> <p>14.5.4 Nitric oxide and impotence 522</p> <p>14.5.5 Nitric oxide and the immune system 523</p> <p>14.6 Therapeutic possibilities 524</p> <p>14.6.1 Compounds that reduce nitric oxide generation 524</p> <p>14.6.2 Compounds that supply nitric oxide 526</p> <p>14.6.3 The genetic approach 529</p> <p>14.7 Questions 529</p> <p><b>15 An introduction to drug and analogue synthesis 531</b></p> <p>15.1 Introduction 531</p> <p>15.2 Some general considerations 532</p> <p>15.2.1 Starting materials 532</p> <p>15.2.2 Practical considerations 532</p> <p>15.2.3 The overall design 532</p> <p>15.2.4 The use of protecting groups 533</p> <p>15.3 Asymmetry in syntheses 534</p> <p>15.3.1 The use of non-stereoselective reactions to produce stereospecific centres 535</p> <p>15.3.2 The use of stereoselective reactions to produce stereogenetic centres 535</p> <p>15.3.3 General methods of asymmetric synthesis 541</p> <p>15.3.4 Methods of assessing the purity of stereoisomers 547</p> <p>15.4 Designing organic syntheses 548</p> <p>15.4.1 An introduction to the disconnection approach 548</p> <p>15.4.2 Convergent synthesis 554</p> <p>15.5 Partial organic synthesis of xenobiotics 556</p> <p>15.6 Questions 557</p> <p><b>16 Drug development and production 559</b></p> <p>16.1 Introduction 559</p> <p>16.2 Chemical development 560</p> <p>16.2.1 Chemical engineering issues 561</p> <p>16.2.2 Chemical plant: health and safety considerations 562</p> <p>16.2.3 Synthesis quality control 563</p> <p>16.2.4 A case study 563</p> <p>16.3 Pharmacological and toxicological testing 565</p> <p>16.4 Drug metabolism and pharmacokinetics 569</p> <p>16.5 Formulation development 570</p> <p>16.6 Production and quality control 570</p> <p>16.7 Patent protection 571</p> <p>16.8 Regulation 572</p> <p>16.9 Questions 573</p> <p>Selected further reading 575</p> <p>Answers to questions 579</p> <p>Index 601</p>
"The many strengths of this introductory text include its seamless integration of biochemistry and pharmacology to direct drug discovery." (<i>Journal of Medicinal Chemistry</i>, September 2008)
<b>Dr Gareth Thomas</b>, The University of Portsmouth, UK.
Medicinal Chemistry, Second Edition provides a comprehensive, balanced introduction to this evolving, multi-disciplinary subject. The book carefully explains fundamental principles, assuming little in the way of prior knowledge. It opens with a broad overview of medicinal assuming little in the way of prior knowledge. It opens with a broad overview of medicinal chemistry followed by chapters that cover the principal methods used in drug design and the isolation of drugs from natural sources. subsequent chapters discuss more specialized aspects of medicinal chemistry and outline drug and analogue synthesis, development and production. Each chapter contains self-assessment questions, numerous examples and a wide variety of applications. <p>Building on the success of the first edition, the book has been completely redesigned to create a clearer, more logical presentation of the material. the text has been extensively revised and updated and includes two new chapters on drugs from natural sources, and drug development and production.</p> <p>Medicinal chemistry, Second Edition will prove invaluable to students of chemistry, medicinal and pharmaceutical chemistry, pharmacy and pharmacology whose courses include medicinal chemistry units.</p> <ul> <li> <div>Provides a comprehensive, accessible, clearly written introduction to medicinal chemistry</div> </li> <li> <div>Assumes little prior knowledge of biology and a familiarity with chemistry at first-year level</div> </li> <li> <div>Includes numerous examples of drugs and drug action</div> </li> <li> <div>Questions are provided at the end of each chapter, with answers at the end of the book</div> </li> <li> <div>Completely revised and updated to include many of the latest drugs and treatments</div> </li> </ul>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €